Articoli correlati a Machine Learning Under Resource Constraints - Fundamentals

Machine Learning Under Resource Constraints - Fundamentals - Brossura

 
9783110785937: Machine Learning Under Resource Constraints - Fundamentals

Sinossi

Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering.

Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to the different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Several machine learning methods are inspected with respect to their resource requirements and how to enhance their scalability on diverse computing architectures ranging from embedded systems to large computing clusters.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Katharina Morik received her doctorate from the University of Hamburg in 1981 and her habilitation from the TU Berlin in 1988. In 1991, she established the chair of Artificial Intelligence at the TU Dortmund University. She is a pioneer of machine learning contributing substantially to inductive logic programming, support vector machines, probabilistic graphical models. In 2011, she acquired the Collaborative Research Center SFB 876 "Providing Information by Resource-Constrained Data Analysis", of which she is the spokesperson. and computing architectures together so that machine learning models may be executed or even trained on resource restricted devices. It consists of 12 projects and a graduate school for more than 50 Ph. D. students. She is a spokesperson of the Competence Center for Machine Learning Rhein Ruhr (ML2R) and coordinator of the German competence centers for AI. She is the author of more than 200 publications in prestigious journals and conferences. She was a founding member, Program Chair and Vice Chair of the conference IEEE International Conference on Data Mining (ICDM) and is a member of the steering committee of and was Program Chair of ECML PKDD. Together with Volker Markl, Katharina Morik heads the working group "Technological Pioneers" of the platform "Learning Systems and Data Science" of the BMBF. Prof. Morik has been a member of the Academy of Technical Sciences since 2015 and of the North Rhine-Westphalian Academy of Sciences and Arts since 2016. She has been awarded Fellow of the German Society of Computer Science GI e.V. in 2019.

Dr. Peter Marwedel studied physics at the University of Kiel, Germany. He received his PhD in physics in 1974. As a post-doc, he published some of the first papers on high-level synthesis and retargetable compilation in the context of the MIMOLA hardware description language. In 1987, his habilitation thesis in computer science was accepted. He worked as a professor for computer engineering at TU Dortmund since 1989. He is chairing ICD, a local spin-off of TU Dortmund. His research interests include design automation for embedded systems, in particular the generation of efficient embedded software. Focus is on energy efficiency and timing predictability. Dr. Marwedel published papers on energy-efficient and timing-predictable software, including compiler-supported use of scratchpad memories. He is the author of one of the few textbooks on embedded systems. The book is complemented by videos available on youtube and by publicly available slides. He served as the vice-chair of the collaborative research center SFB 876, aiming at resource-efficient analysis of large data sets since 2011. Dr. Marwedel is an IEEE Fellow. He received the EDAA Lifetime Achievement Award in 2013 and the ESWEEK Lifetime achievement award in 2014.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Zustand: Hervorragend | Seiten:...
Visualizza questo articolo

EUR 9,90 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 6,38 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Risultati della ricerca per Machine Learning Under Resource Constraints - Fundamentals

Foto dell'editore

Morik, Katharina
Editore: De Gruyter, 2022
ISBN 10: 3110785935 ISBN 13: 9783110785937
Antico o usato Brossura

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Seiten: 505 | Sprache: Englisch | Produktart: Bücher. Codice articolo 41362907/11

Contatta il venditore

Compra usato

EUR 52,52
Convertire valuta
Spese di spedizione: EUR 9,90
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: De Gruyter, 2022
ISBN 10: 3110785935 ISBN 13: 9783110785937
Nuovo PAP
Print on Demand

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783110785937

Contatta il venditore

Compra nuovo

EUR 134,14
Convertire valuta
Spese di spedizione: EUR 6,38
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: De Gruyter, 2022
ISBN 10: 3110785935 ISBN 13: 9783110785937
Nuovo PAP
Print on Demand

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783110785937

Contatta il venditore

Compra nuovo

EUR 139,99
Convertire valuta
Spese di spedizione: EUR 0,55
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: De Gruyter, 2022
ISBN 10: 3110785935 ISBN 13: 9783110785937
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783110785937_new

Contatta il venditore

Compra nuovo

EUR 133,02
Convertire valuta
Spese di spedizione: EUR 10,40
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: De Gruyter, 2022
ISBN 10: 3110785935 ISBN 13: 9783110785937
Nuovo Brossura

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783110785937

Contatta il venditore

Compra nuovo

EUR 119,80
Convertire valuta
Spese di spedizione: EUR 25,62
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Katharina Morik
Editore: De Gruyter, DE, 2022
ISBN 10: 3110785935 ISBN 13: 9783110785937
Nuovo Paperback

Da: Rarewaves USA United, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to the different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Several machine learning methods are inspected with respect to their resource requirements and how to enhance their scalability on diverse computing architectures ranging from embedded systems to large computing clusters. Codice articolo LU-9783110785937

Contatta il venditore

Compra nuovo

EUR 143,30
Convertire valuta
Spese di spedizione: EUR 3,42
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Katharina Morik
Editore: De Gruyter, DE, 2022
ISBN 10: 3110785935 ISBN 13: 9783110785937
Nuovo Paperback

Da: Rarewaves USA, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to the different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Several machine learning methods are inspected with respect to their resource requirements and how to enhance their scalability on diverse computing architectures ranging from embedded systems to large computing clusters. Codice articolo LU-9783110785937

Contatta il venditore

Compra nuovo

EUR 144,00
Convertire valuta
Spese di spedizione: EUR 3,42
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: De Gruyter, 2022
ISBN 10: 3110785935 ISBN 13: 9783110785937
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783110785937

Contatta il venditore

Compra nuovo

EUR 143,46
Convertire valuta
Spese di spedizione: EUR 7,69
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Editore: De Gruyter, 2022
ISBN 10: 3110785935 ISBN 13: 9783110785937
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Katharina Morik received her doctorate from the University of Hamburg in 1981 and her habilitation from the TU Berlin in 1988. In 1991, she established the chair of Artificial Intelligence at the TU Dortmund University. She is a pioneer of machine learni. Codice articolo 723818851

Contatta il venditore

Compra nuovo

EUR 142,46
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Katharina Morik
Editore: De Gruyter, 2022
ISBN 10: 3110785935 ISBN 13: 9783110785937
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware - Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to the different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Several machine learning methods are inspected with respect to their resource requirements and how to enhance their scalability on diverse computing architectures ranging from embedded systems to large computing clusters. Codice articolo 9783110785937

Contatta il venditore

Compra nuovo

EUR 176,07
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro