Articoli correlati a Machine Learning Under Resource Constraints - Applications

Machine Learning Under Resource Constraints - Applications - Brossura

 
9783110785975: Machine Learning Under Resource Constraints - Applications

Sinossi

Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering.

Volume 3 describes how the resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples. In the areas of health and medicine, it is demonstrated how machine learning can improve risk modelling, diagnosis, and treatment selection for diseases. Machine learning supported quality control during the manufacturing process in a factory allows to reduce material and energy cost and save testing times is shown by the diverse real-time applications in electronics and steel production as well as milling. Additional application examples show, how machine-learning can make traffic, logistics and smart cities more effi cient and sustainable. Finally, mobile communications can benefi t substantially from machine learning, for example by uncovering hidden characteristics of the wireless channel.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Katharina Morik received her doctorate from the University of Hamburg in 1981 and her habilitation from the TU Berlin in 1988. In 1991, she established the chair of Artificial Intelligence at the TU Dortmund University. She is a pioneer of machine learning contributing substantially to inductive logic programming, support vector machines, probabilistic graphical models. In 2011, she acquired the Collaborative Research Center SFB 876 "Providing Information by Resource-Constrained Data Analysis", of which she is the spokesperson. and computing architectures together so that machine learning models may be executed or even trained on resource restricted devices. It consists of 12 projects and a graduate school for more than 50 Ph. D. students. She is a spokesperson of the Competence Center for Machine Learning Rhein Ruhr (ML2R) and coordinator of the German competence centers for AI. She is the author of more than 200 publications in prestigious journals and conferences. She was a founding member, Program Chair and Vice Chair of the conference IEEE International Conference on Data Mining (ICDM) and is a member of the steering committee of and was Program Chair of ECML PKDD. Together with Volker Markl, Katharina Morik heads the working group "Technological Pioneers" of the platform "Learning Systems and Data Science" of the BMBF. Prof. Morik has been a member of the Academy of Technical Sciences since 2015 and of the North Rhine-Westphalian Academy of Sciences and Arts since 2016. She has been awarded Fellow of the German Society of Computer Science GI e.V. in 2019. Christian Wietfeld: Prof. Christian Wietfeld is head of the Chair of Communication Networks at TU Dortmund University since 2005. He graduated and received his doctorate from RWTH Aachen. His research interest focusses on future mobile communications networks, especially for safety-critical applications, e.g., in road traffic, logistics, energy technology, and robotics. His research work is documented in numerous publications as well as patents (13 international best paper awards, 5300+ citations). He has also co-founded several award-winning start-ups. Currently, the focus of his research is on 5G and 6G networks, e.g., in the 5G Competence Center funded by the state of North Rhine-Westphalia, where the potential of 5G technology for industrial production and other scenarios with particularly demanding requirements is being explored. Being the Co-Speaker of the Collaborative Research Center 876, he is investigating the use of novel artificial intelligence methods for reliable mobile networks of future generations. Since August 2021, he has been leading the activities of TU Dortmund University in the BMBF-funded 6G Research Hub 6GEM as site spokesperson.

Jörg Rahnenführer: Prof. Dr. Jörg Rahnenführer is professor for "Statistical methods in genetics and chemometrics" at the Department of Statistics at TU Dortmund University. After obtaining a PhD in mathematics from the University of Düsseldorf he worked as a postdoc in Vienna, Berkeley, Omaha, and at the Max Planck Institute for Informatics in Saarbrücken. The respective departments covered a wide range of fields, including mathematics, statistics, biostatistics, genetics, and computer science. His group at TU Dortmund develops and applies in interdisciplinary projects statistical methods mainly for applications in bioinformatics, toxicology, and medicine. He has particularly worked successfully on the meaningful exploitation of high-dimensional omics data and as a member of the SFB 876 on hyperparameter optimization in statistical learning methods. Since 2021 he is the spokesperson of the DFG-funded Research Training Group (RTG) 2624 "Biostatistical Methods for High-Dimensional Data in Toxicology".

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Zustand: Hervorragend | Seiten:...
Visualizza questo articolo

EUR 105,00 per la spedizione da Germania a U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Machine Learning Under Resource Constraints - Applications

Foto dell'editore

Editore: De Gruyter, 2022
ISBN 10: 3110785978 ISBN 13: 9783110785975
Nuovo Brossura

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783110785975

Contatta il venditore

Compra nuovo

EUR 119,57
Convertire valuta
Spese di spedizione: EUR 7,66
In U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: De Gruyter, 2022
ISBN 10: 3110785978 ISBN 13: 9783110785975
Nuovo PAP
Print on Demand

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783110785975

Contatta il venditore

Compra nuovo

EUR 139,50
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: De Gruyter, 2022
ISBN 10: 3110785978 ISBN 13: 9783110785975
Nuovo PAP
Print on Demand

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783110785975

Contatta il venditore

Compra nuovo

EUR 134,06
Convertire valuta
Spese di spedizione: EUR 6,78
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: De Gruyter, 2022
ISBN 10: 3110785978 ISBN 13: 9783110785975
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783110785975

Contatta il venditore

Compra nuovo

EUR 143,18
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jörg Rahnenführer
Editore: De Gruyter, DE, 2022
ISBN 10: 3110785978 ISBN 13: 9783110785975
Nuovo Paperback

Da: Rarewaves USA, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 3 describes how the resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples. In the areas of health and medicine, it is demonstrated how machine learning can improve risk modelling, diagnosis, and treatment selection for diseases. Machine learning supported quality control during the manufacturing process in a factory allows to reduce material and energy cost and save testing times is shown by the diverse real-time applications in electronics and steel production as well as milling. Additional application examples show, how machine-learning can make traffic, logistics and smart cities more effi cient and sustainable. Finally, mobile communications can benefi t substantially from machine learning, for example by uncovering hidden characteristics of the wireless channel. Codice articolo LU-9783110785975

Contatta il venditore

Compra nuovo

EUR 143,34
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: De Gruyter, 2022
ISBN 10: 3110785978 ISBN 13: 9783110785975
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783110785975_new

Contatta il venditore

Compra nuovo

EUR 132,94
Convertire valuta
Spese di spedizione: EUR 13,85
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Morik, Katharina
Editore: De Gruyter, 2022
ISBN 10: 3110785978 ISBN 13: 9783110785975
Antico o usato Brossura

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Seiten: 478 | Sprache: Englisch | Produktart: Bücher. Codice articolo 41362908/11

Contatta il venditore

Compra usato

EUR 52,18
Convertire valuta
Spese di spedizione: EUR 105,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Editore: De Gruyter, 2022
ISBN 10: 3110785978 ISBN 13: 9783110785975
Nuovo Kartoniert / Broschiert

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Kartoniert / Broschiert. Condizione: New. Katharina Morik received her doctorate from the University of Hamburg in 1981 and her habilitation from the TU Berlin in 1988. In 1991, she established the chair of Artificial Intelligence at the TU Dortmund University. She is a pioneer of machine learning . Codice articolo 723818853

Contatta il venditore

Compra nuovo

EUR 144,62
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Katharina Morik/ Christian Wietfeld/ Jörg Rahnenführer/ Jens Buß/ Andreas Becker
Editore: De Gruyter, 2022
ISBN 10: 3110785978 ISBN 13: 9783110785975
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 478 pages. 9.45x6.69x1.06 inches. In Stock. Codice articolo x-3110785978

Contatta il venditore

Compra nuovo

EUR 190,50
Convertire valuta
Spese di spedizione: EUR 28,90
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Katharina Morik
Editore: De Gruyter, 2022
ISBN 10: 3110785978 ISBN 13: 9783110785975
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware - Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 3 describes how the resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples. In the areas of health and medicine, it is demonstrated how machine learning can improve risk modelling, diagnosis, and treatment selection for diseases. Machine learning supported quality control during the manufacturing process in a factory allows to reduce material and energy cost and save testing times is shown by the diverse real-time applications in electronics and steel production as well as milling. Additional application examples show, how machine-learning can make traffic, logistics and smart cities more effi cient and sustainable. Finally, mobile communications can benefi t substantially from machine learning, for example by uncovering hidden characteristics of the wireless channel. Codice articolo 9783110785975

Contatta il venditore

Compra nuovo

EUR 176,79
Convertire valuta
Spese di spedizione: EUR 64,51
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello