There seems to be no doubt that geometry originates from such practical activ ities as weather observation and terrain survey. But there are different manners, methods, and ways to raise the various experiences to the level of theory so that they finally constitute a science. F. Engels said, "The objective of mathematics is the study of space forms and quantitative relations of the real world. " Dur ing the time of the ancient Greeks, there were two different methods dealing with geometry: one, represented by the Euclid's "Elements," purely pursued the logical relations among geometric entities, excluding completely the quantita tive relations, as to establish the axiom system of geometry. This method has become a model of deduction methods in mathematics. The other, represented by the relevant work of Archimedes, focused on the study of quantitative re lations of geometric objects as well as their measures such as the ratio of the circumference of a circle to its diameter and the area of a spherical surface and of a parabolic sector. Though these approaches vary in style, have their own features, and reflect different viewpoints in the development of geometry, both have made great contributions to the development of mathematics. The development of geometry in China was all along concerned with quanti tative relations.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Author’s note to the English-language edition.- 1 Desarguesian geometry and the Desarguesian number system.- 1.1 Hilbert’s axiom system of ordinary geometry.- 1.2 The axiom of infinity and Desargues’ axioms.- 1.3 Rational points in a Desarguesian plane.- 1.4 The Desarguesian number system and rational number subsystem.- 1.5 The Desarguesian number system on a line.- 1.6 The Desarguesian number system associated with a Desarguesian plane.- 1.7 The coordinate system of Desarguesian plane geometry.- 2 Orthogonal geometry, metric geometry and ordinary geometry.- 2.1 The Pascalian axiom and commutative axiom of multiplication — (unordered) Pascalian geometry.- 2.2 Orthogonal axioms and (unordered) orthogonal geometry.- 2.3 The orthogonal coordinate system of (unordered) orthogonal geometry.- 2.4 (Unordered) metric geometry.- 2.5 The axioms of order and ordered metric geometry.- 2.6 Ordinary geometry and its subordinate geometries.- 3 Mechanization of theorem proving in geometry and Hilbert’s mechanization theorem.- 3.1 Comments on Euclidean proof method.- 3.2 The standardization of coordinate representation of geometric concepts.- 3.3 The mechanization of theorem proving and Hilbert’s mechanization theorem about pure point of intersection theorems in Pascalian geometry.- 3.4 Examples for Hilbert’s mechanical method.- 3.5 Proof of Hilbert’s mechanization theorem.- 4 The mechanization theorem of (ordinary) unordered geometry.- 4.1 Introduction.- 4.2 Factorization of polynomials.- 4.3 Well-ordering of polynomial sets.- 4.4 A constructive theory of algebraic varieties — irreducible ascending sets and irreducible algebraic varieties.- 4.5 A constructive theory of algebraic varieties — irreducible decomposition of algebraic varieties.- 4.6 A constructive theory of algebraic varieties — the notion of dimension and the dimension theorem.- 4.7 Proof of the mechanization theorem of unordered geometry.- 4.8 Examples for the mechanical method of unordered geometry.- 5 Mechanization theorems of (ordinary) ordered geometries.- 5.1 Introduction.- 5.2 Tarski’s theorem and Seidenberg’s method.- 5.3 Examples for the mechanical method of ordered geometries.- 6 Mechanization theorems of various geometries.- 6.1 Introduction.- 6.2 The mechanization of theorem proving in projective geometry.- 6.3 The mechanization of theorem proving in Bolyai-Lobachevsky’s hyperbolic non-Euclidean geometry.- 6.4 The mechanization of theorem proving in Riemann’s elliptic non-Euclidean geometry.- 6.5 The mechanization of theorem proving in two circle geometries.- 6.6 The mechanization of formula proving with transcendental functions.- References.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 2,25 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 3,62 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: GoldBooks, Denver, CO, U.S.A.
Condizione: new. Codice articolo 69O37_62_3211825061
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 915188-n
Quantità: 15 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020085061
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condizione: new. Paperback. This book is a translation of Professor Wus seminal Chinese book of 1984 on Automated Geometric Theorem Proving. The translation was done by his former student Dongming Wang jointly with Xiaofan Jin so that authenticity is guaranteed. Meanwhile, automated geometric theorem proving based on Wus method of characteristic sets has become one of the fundamental, practically successful, methods in this area that has drastically enhanced the scope of what is computationally tractable in automated theorem proving. This book is a source book for students and researchers who want to study both the intuitive first ideas behind the method and the formal details together with many examples. " Dur ing the time of the ancient Greeks, there were two different methods dealing with geometry: one, represented by the Euclid's "Elements," purely pursued the logical relations among geometric entities, excluding completely the quantita tive relations, as to establish the axiom system of geometry. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783211825068
Quantità: 1 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783211825068
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 915188
Quantità: 15 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783211825068
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -There seems to be no doubt that geometry originates from such practical activ ities as weather observation and terrain survey. But there are different manners, methods, and ways to raise the various experiences to the level of theory so that they finally constitute a science. F. Engels said, 'The objective of mathematics is the study of space forms and quantitative relations of the real world. ' Dur ing the time of the ancient Greeks, there were two different methods dealing with geometry: one, represented by the Euclid's 'Elements,' purely pursued the logical relations among geometric entities, excluding completely the quantita tive relations, as to establish the axiom system of geometry. This method has become a model of deduction methods in mathematics. The other, represented by the relevant work of Archimedes, focused on the study of quantitative re lations of geometric objects as well as their measures such as the ratio of the circumference of a circle to its diameter and the area of a spherical surface and of a parabolic sector. Though these approaches vary in style, have their own features, and reflect different viewpoints in the development of geometry, both have made great contributions to the development of mathematics. The development of geometry in China was all along concerned with quanti tative relations. 308 pp. Englisch. Codice articolo 9783211825068
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 310. Codice articolo 261765722
Quantità: 4 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. A translation of Professor Wu's seminal Chinese book of 1984 on Automated Geometric Theorem Proving. This book is a source book for students and researchers who want to study both the intuitive first ideas behind the method and the formal details together with many examples. Translator(s): Jin, X.; Wang, D. Series: Texts and Monographs in Symbolic Computation. Num Pages: 302 pages, biography. BIC Classification: PBCH; PBMS; UYA. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly. Dimension: 244 x 170 x 17. Weight in Grams: 534. . 1994. Softcover reprint of the original 1st ed. 1994. paperback. . . . . Codice articolo V9783211825068
Quantità: 15 disponibili