The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems.
A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered.
All the concepts described in this book are illustrated by both simple academic illustrative examples and practical applications.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
The present book is devoted to problems of adaptation of
artificial neural networks to robust fault diagnosis schemes. It
presents neural networks-based modelling and estimation techniques used
for designing robust fault diagnosis schemes for non-linear dynamic systems.
A part of the book focuses on fundamental issues such as architectures of
dynamic neural networks, methods for designing of neural networks and fault
diagnosis schemes as well as the importance of robustness. The book is of a tutorial
value and can be perceived as a good starting point for the new-comers
to this field. The book is also devoted to advanced schemes of description of
neural model uncertainty. In particular, the methods of computation of neural
networks uncertainty with robust parameter estimation are presented. Moreover,
a novel approach for system identification with the state-space GMDH
neural network is delivered.
All the concepts described in this book are illustrated by both simple
academic illustrative examples and practical applications.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Seiten: 204 | Sprache: Englisch | Produktart: Sonstiges. Codice articolo 24107113/12
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemesDetails neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. Codice articolo 4496186
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems.A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered.All the concepts described in this book are illustrated by both simple academic illustrative examples and practical applications. 204 pp. Englisch. Codice articolo 9783319015460
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems.A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered.All the concepts described in this book are illustrated by both simple academic illustrative examples and practical applications. Codice articolo 9783319015460
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems.A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered.All the concepts described in this book are illustrated by both simple academic illustrative examples and practical applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 204 pp. Englisch. Codice articolo 9783319015460
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783319015460_new
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 206. Codice articolo 2697858887
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 2014 edition. 200 pages. 9.25x6.50x0.75 inches. In Stock. Codice articolo x-331901546X
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 206 125 Illus. Codice articolo 94538392
Quantità: 4 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020086037
Quantità: Più di 20 disponibili