Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems - Brossura

Libro 14 di 27: SpringerBriefs in Electrical and Computer Engineering

Gugat, Martin

 
9783319188898: Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems

Sinossi

This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary. The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization. Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples. To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled. Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Martin Gugat is Professor in the Department of Mathematics at Friedrich-Alexander-University, Erlangen-Nürnberg, Germany.

Dalla quarta di copertina

This brief considers recent results on optimal control and stabilization of systems governed by hyperbolic partial differential equations, specifically those in which the control action takes place at the boundary. The wave equation is used as a typical example of a linear system, through which the author explores initial boundary value problems, concepts of exact controllability, optimal exact control, and boundary stabilization. Nonlinear systems are also covered, with the Korteweg-de Vries and Burgers Equations serving as standard examples. To keep the presentation as accessible as possible, the author uses the case of a system with a state that is defined on a finite space interval, so that there are only two boundary points where the system can be controlled. Graduate and post-graduate students as well as researchers in the field will find this to be an accessible introduction to problems of optimal control and stabilization.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9783319188911: Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems

Edizione in evidenza

ISBN 10:  3319188917 ISBN 13:  9783319188911
Casa editrice: Birkhäuser, 2015
Brossura