This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.
The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
“There is much to like about the book under review. The authors present Bayesian nonparametric statistics focusing on how it is applied in data analysis. ... This is a book for a statistician or graduate student that has accepted the Bayesian approach and would like to know more about Bayesian approaches to nonparametric problems.” (Ross S. McVinish, Mathematical Reviews, February, 2016)
“The book provides a rich review of Bayesian nonparametric methods and models with a wealth of illustrations ranging from simple examples to more elaborated applications on case studies considered in recent literature. ... the book succeeds in the difficult task of providing a rather complete, yet coincise, overview. Overall, the nature of the book makes it a suitable reference for both practitioners and theorists.” (Bernardo Nipoti, zbMATH 1333.62003, 2016)
“Methods are illustrated with a wealth of examples, ranging from stylised applications to case studies from recent literature. The book is a good reference for statisticians interested in Bayesian non-parametric data analysis. It is well-written and structured. Readers can find the algorithms, examples and applications easy to follow and extremely useful. This book makes a good contribution to the literature in the area of Bayesian non-parametric statistics.” (Diego Andres Perez Ruiz, International Statistical Review, Vol. 84 (1), 2016)
“Book provides a brief overview and introduction of the subject, points to associated theoretical and applied literature, guides the interested reader to the most important and established methods in a wealth of methods where one can easily get lost, and encourages their application. At the same time, hints to the powerful and comprehensive R package DPpackage, which comprises most of the discussed methods in a unifying, easily accessible interface, greatly reduces the barriers to the use of nonparametric Bayesian methods.” (Manuel Wiesenfarth, Biometrical Journal, Vol. 58 (4), 2016)
Peter Mueller is Professor in the Department of Mathematics and the Department of Statistics & Data Science at the University of Texas at Austin. He has published widely on nonparametric Bayesian statistics, with an emphasis on applications in biostatistics and bioinformatics.
Fernando Andrés Quintana is Professor in the Department of Statistics at Pontificia Universidad Catolica de Chile with interests in nonparametric Bayesian analysis and statistical computing. His publications include extensive work on clustering methods and applications in biostatistics.
Alejandro Jara is Associate Professor in the Department of Statistics at Pontificia Universidad Catolica de Chile, with research interests in nonparametric Bayesian statistics, Markov chain Monte Carlo methods and statistical computing. He developed the R package "DPpackage," a widely used public domain set of programs for inference under nonparametric Bayesian models.
Timothy Hanson is Professor of Statistics in the Department of Statistics at the University of South Carolina. His research interests include survival analysis, nonparametric regression
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 2,35 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 18,27 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiDa: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783319368429
Quantità: 10 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 28123396
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 28123396-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 28123396-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783319368429_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 28123396
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book's structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages. 208 pp. Englisch. Codice articolo 9783319368429
Quantità: 2 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783319368429
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book's structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones.The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages. Codice articolo 9783319368429
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This is the first text to introduce nonparametric Bayesian inference from a data analysis perspectiveIncludes a large number of examples to illustrate the application of nonparametric Bayesian models for important statistical inference Problems. Codice articolo 448747823
Quantità: Più di 20 disponibili