Hyperplane Arrangements: An Introduction - Brossura

Libro 205 di 260: Universitext

Dimca, Alexandru

 
9783319562209: Hyperplane Arrangements: An Introduction

Sinossi

This textbook provides an accessible introduction to the rich and beautiful area of hyperplane arrangement theory, where discrete mathematics, in the form of combinatorics and arithmetic, meets continuous mathematics, in the form of the topology and Hodge theory of complex algebraic varieties.

The topics discussed in this book range from elementary combinatorics and discrete geometry to more advanced material on mixed Hodge structures, logarithmic connections and Milnor fibrations. The author covers a lot of ground in a relatively short amount of space, with a focus on defining concepts carefully and giving proofs of theorems in detail where needed. Including a number of surprising results and tantalizing open problems, this timely book also serves to acquaint the reader with the rapidly expanding literature on the subject.

Hyperplane Arrangements will be particularly useful to graduate students and researchers who are interested in algebraic geometry or algebraic topology. The book contains numerous exercises at the end of each chapter, making it suitable for courses as well as self-study.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Alexandru Dimca is a world-leading authority in Singularity Theory and Hyperplane Arrangements, with a strong track record of ground-breaking research. He is the author of four books and over 120 research papers, many of them devoted to the topics discussed in this book. He has an established reputation for his clear writing style, and his vast teaching experience helps him to convey the main ideas in an accessible and efficient way.

Dalla quarta di copertina

This textbook provides an accessible introduction to the rich and beautiful area of hyperplane arrangement theory, where discrete mathematics, in the form of combinatorics and arithmetic, meets continuous mathematics, in the form of the topology and Hodge theory of complex algebraic varieties.

The topics discussed in this book range from elementary combinatorics and discrete geometry to more advanced material on mixed Hodge structures, logarithmic connections and Milnor fibrations. The author covers a lot of ground in a relatively short amount of space, with a focus on defining concepts carefully and giving proofs of theorems in detail where needed. Including a number of surprising results and tantalizing open problems, this timely book also serves to acquaint the reader with the rapidly expanding literature on the subject.

Hyperplane Arrangements will be particularly useful to graduate students and researchers who are interested in algebraic geometry or algebraic topology. The book contains numerous exercises at the end of each chapter, making it suitable for courses as well as self-study.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9783319562223: Hyperplane Arrangements: An Introduction

Edizione in evidenza

ISBN 10:  3319562223 ISBN 13:  9783319562223
Casa editrice: Springer, 2017
Brossura