This work is motivated by the ongoing open question of how information in the outside world is represented and processed by the brain. Consequently, several novel methods are developed.
A new mathematical formulation is proposed for the encoding and decoding of analog signals using integrate-and-fire neuron models. Based on this formulation, a novel algorithm, significantly faster than the state-of-the-art method, is proposed for reconstructing the input of the neuron.
Two new identification methods are proposed for neural circuits comprising a filter in series with a spiking neuron model. These methods reduce the number of assumptions made by the state-of-the-art identification framework, allowing for a wider range of models of sensory processing circuits to be inferred directly from input-output observations.
A third contribution is an algorithm that computes the spike time sequence generated by an integrate-and-fire neuron model in response to the output of a linear filter, given the input of the filter encoded with the same neuron model.Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dr Dorian Florescu is currently a Postdoctoral Research Fellow in the Department of Automatic Control and Systems Engineering at the University of Sheffield, working on the ‘Digital Fruit Fly Brain’ project, funded jointly by BBSRC and the National Science Foundation.
He was awarded the BEng degree in Systems Engineering from the Technical University of Iasi, Romania, in 2011 and the PhD degree in Automatic Control & Systems Engineering from the University of Sheffield
This work is motivated by the ongoing open question of how information in the outside world is represented and processed by the brain. Consequently, several novel methods are developed.
A new mathematical formulation is proposed for the encoding and decoding of analog signals using integrate-and-fire neuron models. Based on this formulation, a novel algorithm, significantly faster than the state-of-the-art method, is proposed for reconstructing the input of the neuron.
Two new identification methods are proposed for neural circuits comprising a filter in series with a spiking neuron model. These methods reduce the number of assumptions made by the state-of-the-art identification framework, allowing for a wider range of models of sensory processing circuits to be inferred directly from input-output observations.
A third contribution is an algorithm that computes the spike time sequence generated by an integrate-and-fire neuron model in response to the output of a linear filter, given the input of the filter encoded with the same neuron model.Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nominated as an outstanding Ph.D. thesis by the University of SheffieldReformulates, for the first time, the encoding performed by the integrate-and-fire neuron model as a problem of uniform sampling of an auxiliary function on a set of . Codice articolo 146767173
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This work is motivated by the ongoing open question of how information in the outside world is represented and processed by the brain. Consequently, several novel methods are developed.A new mathematical formulation is proposed for the encoding and decoding of analog signals using integrate-and-fire neuron models. Based on this formulation, a novel algorithm, significantly faster than the state-of-the-art method, is proposed for reconstructing the input of the neuron.Two new identification methods are proposed for neural circuits comprising a filter in series with a spiking neuron model. These methods reduce the number of assumptions made by the state-of-the-art identification framework, allowing for a wider range of models of sensory processing circuits to be inferred directly from input-output observations.A third contribution is an algorithm that computes the spike time sequence generated by an integrate-and-fire neuron model in response to the output of a linear filter, given the input of the filter encoded with the same neuron model. 156 pp. Englisch. Codice articolo 9783319570808
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This work is motivated by the ongoing open question of how information in the outside world is represented and processed by the brain. Consequently, several novel methods are developed.A new mathematical formulation is proposed for the encoding and decoding of analog signals using integrate-and-fire neuron models. Based on this formulation, a novel algorithm, significantly faster than the state-of-the-art method, is proposed for reconstructing the input of the neuron.Two new identification methods are proposed for neural circuits comprising a filter in series with a spiking neuron model. These methods reduce the number of assumptions made by the state-of-the-art identification framework, allowing for a wider range of models of sensory processing circuits to be inferred directly from input-output observations.A third contribution is an algorithm that computes the spike time sequence generated by an integrate-and-fire neuron model in response to the output of alinear filter, given the input of the filter encoded with the same neuron model. Codice articolo 9783319570808
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -This work is motivated by the ongoing open question of how information in the outside world is represented and processed by the brain. Consequently, several novel methods are developed.A new mathematical formulation is proposed for the encoding and decoding of analog signals using integrate-and-fire neuron models. Based on this formulation, a novel algorithm, significantly faster than the state-of-the-art method, is proposed for reconstructing the input of the neuron.Two new identification methods are proposed for neural circuits comprising a filter in series with a spiking neuron model. These methods reduce the number of assumptions made by the state-of-the-art identification framework, allowing for a wider range of models of sensory processing circuits to be inferred directly from input-output observations.A third contribution is an algorithm that computes the spike time sequence generated by an integrate-and-fire neuron model in response to the output of alinear filter, given the input of the filter encoded with the same neuron model.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 156 pp. Englisch. Codice articolo 9783319570808
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783319570808_new
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783319570808
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 153 pages. 9.25x6.10x0.39 inches. In Stock. Codice articolo x-3319570803
Quantità: 2 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020100385
Quantità: Più di 20 disponibili