Articoli correlati a Learning from Imbalanced Data Sets

Learning from Imbalanced Data Sets - Rilegato

 
9783319980737: Learning from Imbalanced Data Sets

Sinossi

This  book provides a general and comprehensible overview of   imbalanced learning.  It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. 

This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.

This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.

Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.

This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering.  It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions. 

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,27 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

EUR 20,59 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783030074463: Learning from Imbalanced Data Sets

Edizione in evidenza

ISBN 10:  3030074463 ISBN 13:  9783030074463
Casa editrice: Springer, 2019
Brossura

Risultati della ricerca per Learning from Imbalanced Data Sets

Foto dell'editore

Alberto Fernandez
Editore: Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuovo Rilegato

Da: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 396 pp., hardcover, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Photos available upon request. Codice articolo ZB1317814

Contatta il venditore

Compra nuovo

EUR 113,20
Convertire valuta
Spese di spedizione: EUR 20,59
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alberto Fernández|Salvador García|Mikel Galar|Ronaldo C. Prati|Bartosz Krawczyk|Francisco Herrera
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers a comprehensive review of imbalanced learning widely used worldwide in many real applications,&nbspsuch as fraud detection, disease diagnosis, etcProvides the user with the required background and software tools&nbsp needed to deal. Codice articolo 234946118

Contatta il venditore

Compra nuovo

EUR 136,16
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Fernández
Editore: Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783319980737_new

Contatta il venditore

Compra nuovo

EUR 152,80
Convertire valuta
Spese di spedizione: EUR 10,35
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Fernández, Alberto; García, Salvador; Galar, Mikel; Prati, Ronaldo C.; Krawczyk, Bartosz
Editore: Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 33408471-n

Contatta il venditore

Compra nuovo

EUR 152,79
Convertire valuta
Spese di spedizione: EUR 17,27
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alberto Fernández
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a general and comprehensibleoverview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considersthe different scenarios in Data Science for which the imbalanced classification cancreate a real challenge.This book stresses the gap with standard classification tasks by reviewing the casestudies and ad-hoc performance metrics that are applied in this area. It also covers thedifferent approaches that have been traditionally applied to address the binaryskewed class distribution. Specifically, it reviews cost-sensitive learning, data-levelpreprocessing methods and algorithm-level solutions, taking also into account thoseensemble-learning solutions that embed any of the former alternatives. Furthermore, itfocuses on the extension of the problem for multi-class problems, where the formerclassical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causeswhich, added to the uneven class distribution, truly hinders the performance ofclassification algorithms in this scenario. Then, some notes on data reduction areprovided in order to understand the advantages related to the use of this type of approaches.Finally this book introduces some novel areas of study that are gathering a deeper attentionon the imbalanced data issue. Specifically, it considers the classification of data streams,non-classical classification problems, and the scalability related to Big Data. Examplesof software libraries and modules to address imbalanced classification are provided.This book is highly suitable for technical professionals, seniorundergraduate and graduatestudents in the areas of data science,computer science and engineering.It will also be useful for scientists and researchers to gain insight on the currentdevelopments in this area of study, as well as future research directions. 396 pp. Englisch. Codice articolo 9783319980737

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Fernández, Alberto; García, Salvador; Galar, Mikel; Prati, Ronaldo C.; Krawczyk, Bartosz
Editore: Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 33408471-n

Contatta il venditore

Compra nuovo

EUR 154,83
Convertire valuta
Spese di spedizione: EUR 17,15
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alberto Fernández
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a general and comprehensibleoverview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considersthe different scenarios in Data Science for which the imbalanced classification cancreate a real challenge.This book stresses the gap with standard classification tasks by reviewing the casestudies and ad-hoc performance metrics that are applied in this area. It also covers thedifferent approaches that have been traditionally applied to address the binaryskewed class distribution. Specifically, it reviews cost-sensitive learning, data-levelpreprocessing methods and algorithm-level solutions, taking also into account thoseensemble-learning solutions that embed any of the former alternatives. Furthermore, itfocuses on the extension of the problem for multi-class problems, where the formerclassical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causeswhich, added to the uneven class distribution, truly hinders the performance ofclassification algorithms in this scenario. Then, some notes on data reduction areprovided in order to understand the advantages related to the use of this type of approaches.Finally this book introduces some novel areas of study that are gathering a deeper attentionon the imbalanced data issue. Specifically, it considers the classification of data streams,non-classical classification problems, and the scalability related to Big Data. Examplesof software libraries and modules to address imbalanced classification are provided.This book is highly suitable for technical professionals, seniorundergraduate and graduatestudents in the areas of data science,computer science and engineering.It will also be useful for scientists and researchers to gain insight on the currentdevelopments in this area of study, as well as future research directions. Codice articolo 9783319980737

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alberto Fernández
ISBN 10: 3319980734 ISBN 13: 9783319980737
Nuovo Rilegato
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 396 pp. Englisch. Codice articolo 9783319980737

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Fernández, Alberto; García, Salvador; Galar, Mikel; Prati, Ronaldo C.; Krawczyk, Bartosz
Editore: Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Antico o usato Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 33408471

Contatta il venditore

Compra usato

EUR 167,25
Convertire valuta
Spese di spedizione: EUR 17,27
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Fernández, Alberto; García, Salvador; Galar, Mikel; Prati, Ronaldo C.; Krawczyk, Bartosz
Editore: Springer, 2018
ISBN 10: 3319980734 ISBN 13: 9783319980737
Antico o usato Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 33408471

Contatta il venditore

Compra usato

EUR 167,60
Convertire valuta
Spese di spedizione: EUR 17,15
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 9 copie di questo libro

Vedi tutti i risultati per questo libro