Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pion~er work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and W. Kaplan - to name a few - who all studied "regular curve families" on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and ot"ners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. i~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and characteristic classes) on the one hand, and the qualitative or geometric theory on the other. The present volume is the first part of a monograph on geometric aspects of foliations. Our intention here is to present some fundamental concepts and results as well as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that this goal has been achieved.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
I — Foliations on Compact Surfaces.- 1. Vector fields on surfaces.- 1.1. Examples of isolated singularities.- 1.2. The index of an isolated singularity.- 1.3. The theorem of Poincaré — Bohl — Hopf.- 1.4. Existence of non-singular vector fields.- 2. Foliations on surfaces.- 2.1. Motivating remarks.- 2.2. Definition of foliations and related notions.- 2.3. Orientability; relation with vector fields.- 2.4. The existence theorem of Poincaré-Kneser.- 3. Construction of foliations.- 3.1. Suspensions.- 3.2. Germs near circle leaves; leaf holonomy.- 3.3. Reeb components.- 3.4. Turbulization.- 3.5. Gluing foliations together.- 4. Classification of foliations on surfaces.- 4.1. Topological dynamics.- 4.2. Foliations on the annulus and on the Möbius band.- 4.3. Foliations on the torus and on the Klein bottle.- 5. Denjoy theory on the circle.- 5.1. The rotation number.- 5.2. Denjoy’s example.- 5.3. Denjoy’s theorem.- 6. Structural stability.- 6.1. Structural stability for diffeomorphisms of the interval and the circle.- 6.2. Structural stability for suspensions.- 6.3. Structural stability for foliations in general.- Chatter II — Fundamentals on Foliations.- 1. Foliated bundles.- 1.1. Preparatory material on fibre bundles.- 1.1. Suspensions of group actions.- 1.3. Foliated bundles.- 1.4. Equivariant submersions.- 2. Foliated manifolds.- 2.1. Definition of a foliation; related notions.- 2.2. Transversality; orientability.- 2.3. The tangent bundle of a foliation; Frobenius’ theorem.- 2.4. Pfaffian forms; Frobenius’ theorem (dual version).- 3. Examples of foliated manifolds.- 3.1. Foliations defined by locally free group actions.- 3.2. Foliations with a transverse structure..- III — Holonom.- 1. Foliated microbundles.- 1.1. Localization in foliated bundles.- 1.2. Generalities on foliated microbundles.- 1.3. Holonomy of foliated microbundles.- 2. Holonomy of leaves.- 2.1. Unwrapping of leaves; leaf holonomy.- 2.2. Holonomy and foliated cocycles; leaves without holonomy.- 3. Linear holonomy; Thurston’s stability theorem.- 3.1. Linear and infinitesimal holonomy.- 3.2. Thurston’s stability theorem.- Literature.- Glossary of notations.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Codice articolo 4502135
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pion~er work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and W. Kaplan - to name a few - who all studied 'regular curve families' on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and ot'ners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. i~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and characteristic classes) on the one hand, and the qualitative or geometric theory on the other. The present volume is the first part of a monograph on geometric aspects of foliations. Our intention here is to present some fundamental concepts and results as well as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that this goal has been achieved. 236 pp. Deutsch. Codice articolo 9783322984838
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pion~er work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and W. Kaplan - to name a few - who all studied 'regular curve families' on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and ot'ners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. i~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and characteristic classes) on the one hand, and the qualitative or geometric theory on the other. The present volume is the first part of a monograph on geometric aspects of foliations. Our intention here is to present some fundamental concepts and results as well as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that this goal has been achieved. Codice articolo 9783322984838
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Foliation theory grew out of the theory of dynamical systems on manifolds and Ch. Ehresmann's connection theory on fibre bundles. Pion~er work was done between 1880 and 1940 by H. Poincare, I. Bendixson, H. Kneser, H. Whitney, and W. Kaplan - to name a few - who all studied 'regular curve families' on surfaces, and later by Ch. Ehresmann, G. Reeb, A. Haefliger and ot'ners between 1940 and 1960. Since then the subject has developed from a collection of a few papers to a wide field of research. i~owadays, one usually distinguishes between two main branches of foliation theory, the so-called quantitative theory (including homotopy theory and characteristic classes) on the one hand, and the qualitative or geometric theory on the other. The present volume is the first part of a monograph on geometric aspects of foliations. Our intention here is to present some fundamental concepts and results as well as a great number of ideas and examples of various types. The selection of material from only one branch of the theory is conditioned not only by the authors' personal interest but also by the wish to give a systematic and detailed treatment, including complete proofs of all main results. We hope that this goal has been achieved.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 252 pp. Deutsch. Codice articolo 9783322984838
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783322984838_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783322984838
Quantità: 10 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783322984838
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 252. Codice articolo 2697800456
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 252 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Codice articolo 94629591
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 252. Codice articolo 1897800450
Quantità: 4 disponibili