The purpose of this work is to forecast the amount of network traffic in Transmission Control Protocol/Internet Protocol (TCP/IP) -based networks by using different time lags and various machine learning methods including Support Vector Machines (SVM), Multilayer Perceptron (MLP), Radial Basis Function (RBF) Neural Network, M5P (a decision tree with linear regression functions at the nodes), Random Forest (RF), Random Tree (RT), and Reduced Error Prunning Error (REPTree), and statistical regression methods including Multiple Linear Regression (MLR) and Holt-Winters and compare the performance of statistical and machine learning methods. Two different Internet Service Providers' (ISPs) traffic data have been utilized to build traffic forecasting models. The first 66% of the data sets has been utilized as training sets and the rest has been used as test sets. The performance of the forecasting models for the data sets has been assessed using Mean Absulote Percentage Error (MAPE). The results show that SVM and M5P based models usually perform better than the ones obtained by the other methods.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Derman AKGÖL was born in Antakya-Turkey, in 1986. She graduated from the Department of Mathematics, Çukurova University, Adana, in 2008 and started the MSc program at Department of Mathematics, University Cincinnati, Ohio, USA in 2010 and graduated in 2012. She completed MSc program at the Department of Computer Engineering in 2016.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The purpose of this work is to forecast the amount of network traffic in Transmission Control Protocol/Internet Protocol (TCP/IP) -based networks by using different time lags and various machine learning methods including Support Vector Machines (SVM), Multilayer Perceptron (MLP), Radial Basis Function (RBF) Neural Network, M5P (a decision tree with linear regression functions at the nodes), Random Forest (RF), Random Tree (RT), and Reduced Error Prunning Error (REPTree), and statistical regression methods including Multiple Linear Regression (MLR) and Holt-Winters and compare the performance of statistical and machine learning methods. Two different Internet Service Providers' (ISPs) traffic data have been utilized to build traffic forecasting models. The first 66% of the data sets has been utilized as training sets and the rest has been used as test sets. The performance of the forecasting models for the data sets has been assessed using Mean Absulote Percentage Error (MAPE). The results show that SVM and M5P based models usually perform better than the ones obtained by the other methods. 112 pp. Englisch. Codice articolo 9783330022492
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Codice articolo 158421842
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 112 pages. 8.66x5.91x0.26 inches. In Stock. Codice articolo 3330022493
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The purpose of this work is to forecast the amount of network traffic in Transmission Control Protocol/Internet Protocol (TCP/IP) -based networks by using different time lags and various machine learning methods including Support Vector Machines (SVM), Multilayer Perceptron (MLP), Radial Basis Function (RBF) Neural Network, M5P (a decision tree with linear regression functions at the nodes), Random Forest (RF), Random Tree (RT), and Reduced Error Prunning Error (REPTree), and statistical regression methods including Multiple Linear Regression (MLR) and Holt-Winters and compare the performance of statistical and machine learning methods. Two different Internet Service Providers' (ISPs) traffic data have been utilized to build traffic forecasting models. The first 66% of the data sets has been utilized as training sets and the rest has been used as test sets. The performance of the forecasting models for the data sets has been assessed using Mean Absulote Percentage Error (MAPE). The results show that SVM and M5P based models usually perform better than the ones obtained by the other methods.Books on Demand GmbH, Überseering 33, 22297 Hamburg 112 pp. Englisch. Codice articolo 9783330022492
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The purpose of this work is to forecast the amount of network traffic in Transmission Control Protocol/Internet Protocol (TCP/IP) -based networks by using different time lags and various machine learning methods including Support Vector Machines (SVM), Multilayer Perceptron (MLP), Radial Basis Function (RBF) Neural Network, M5P (a decision tree with linear regression functions at the nodes), Random Forest (RF), Random Tree (RT), and Reduced Error Prunning Error (REPTree), and statistical regression methods including Multiple Linear Regression (MLR) and Holt-Winters and compare the performance of statistical and machine learning methods. Two different Internet Service Providers' (ISPs) traffic data have been utilized to build traffic forecasting models. The first 66% of the data sets has been utilized as training sets and the rest has been used as test sets. The performance of the forecasting models for the data sets has been assessed using Mean Absulote Percentage Error (MAPE). The results show that SVM and M5P based models usually perform better than the ones obtained by the other methods. Codice articolo 9783330022492
Quantità: 1 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Development of New Models for Network Traffic Forecasting | Derman Akgöl (u. a.) | Taschenbuch | 112 S. | Englisch | 2017 | LAP Lambert Academic Publishing | EAN 9783330022492 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand. Codice articolo 108218036
Quantità: 5 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
paperback. Condizione: New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Codice articolo ERICA82933300224936
Quantità: 1 disponibili