Articoli correlati a An Improved Multi-Objective Evolutionary with Adaptable...

An Improved Multi-Objective Evolutionary with Adaptable Parameters - Brossura

 
9783330650558: An Improved Multi-Objective Evolutionary with Adaptable Parameters

Sinossi

Genetic Algorithms, introduced by Holland in 1975, are general-purpose heuristic search algorithms that mimic the evolutionary process in order to find the fittest solutions. The algorithms have received growing interest due to their ability to discover good solutions quickly for complex searching and optimization problems. The traditional GAs then have been converted to multi-objective GAs to solve multi-objective optimization problems successfully. However, GAs require parameter tunings (such as population size, mutation and crossover probabilities, selection rates) in order to achieve the desirable solutions. The task of tuning GA parameters has been proven to be far from trivial due to the complex interactions among the parameters. The objective of this research is to develop the elitist Non-dominated Sorting GA (NSGA-II) for multi-objective optimization as a parameter-less multi-objective GA. The research then will evaluate and discuss the performance of the parameter-less NSGA-II against other GAs with optimal parameter settings using the experiment result on a test problem borrowed from the literature.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per An Improved Multi-Objective Evolutionary with Adaptable...

Immagini fornite dal venditore

Khoa Tran
Editore: Scholars\' Press, 2017
ISBN 10: 3330650559 ISBN 13: 9783330650558
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Tran KhoaDr. Tran earned his Ph.D. in Computer and Information Sciences from Nova Southeastern University in Florida, M.S. degree in Computer Science from California State University at Fullerton, and B.S. degree in Information and . Codice articolo 151238755

Contatta il venditore

Compra nuovo

EUR 75,27
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Khoa Tran
Editore: Scholars' Press Feb 2017, 2017
ISBN 10: 3330650559 ISBN 13: 9783330650558
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Genetic Algorithms, introduced by Holland in 1975, are general-purpose heuristic search algorithms that mimic the evolutionary process in order to find the fittest solutions. The algorithms have received growing interest due to their ability to discover good solutions quickly for complex searching and optimization problems. The traditional GAs then have been converted to multi-objective GAs to solve multi-objective optimization problems successfully. However, GAs require parameter tunings (such as population size, mutation and crossover probabilities, selection rates) in order to achieve the desirable solutions. The task of tuning GA parameters has been proven to be far from trivial due to the complex interactions among the parameters. The objective of this research is to develop the elitist Non-dominated Sorting GA (NSGA-II) for multi-objective optimization as a parameter-less multi-objective GA. The research then will evaluate and discuss the performance of the parameter-less NSGA-II against other GAs with optimal parameter settings using the experiment result on a test problem borrowed from the literature. 268 pp. Englisch. Codice articolo 9783330650558

Contatta il venditore

Compra nuovo

EUR 94,90
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Khoa Tran
Editore: Scholars' Press, 2017
ISBN 10: 3330650559 ISBN 13: 9783330650558
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Genetic Algorithms, introduced by Holland in 1975, are general-purpose heuristic search algorithms that mimic the evolutionary process in order to find the fittest solutions. The algorithms have received growing interest due to their ability to discover good solutions quickly for complex searching and optimization problems. The traditional GAs then have been converted to multi-objective GAs to solve multi-objective optimization problems successfully. However, GAs require parameter tunings (such as population size, mutation and crossover probabilities, selection rates) in order to achieve the desirable solutions. The task of tuning GA parameters has been proven to be far from trivial due to the complex interactions among the parameters. The objective of this research is to develop the elitist Non-dominated Sorting GA (NSGA-II) for multi-objective optimization as a parameter-less multi-objective GA. The research then will evaluate and discuss the performance of the parameter-less NSGA-II against other GAs with optimal parameter settings using the experiment result on a test problem borrowed from the literature. Codice articolo 9783330650558

Contatta il venditore

Compra nuovo

EUR 94,90
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Khoa Tran
Editore: Scholars' Press Feb 2017, 2017
ISBN 10: 3330650559 ISBN 13: 9783330650558
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Genetic Algorithms, introduced by Holland in 1975, are general-purpose heuristic search algorithms that mimic the evolutionary process in order to find the fittest solutions. The algorithms have received growing interest due to their ability to discover good solutions quickly for complex searching and optimization problems. The traditional GAs then have been converted to multi-objective GAs to solve multi-objective optimization problems successfully. However, GAs require parameter tunings (such as population size, mutation and crossover probabilities, selection rates) in order to achieve the desirable solutions. The task of tuning GA parameters has been proven to be far from trivial due to the complex interactions among the parameters. The objective of this research is to develop the elitist Non-dominated Sorting GA (NSGA-II) for multi-objective optimization as a parameter-less multi-objective GA. The research then will evaluate and discuss the performance of the parameter-less NSGA-II against other GAs with optimal parameter settings using the experiment result on a test problem borrowed from the literature.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 268 pp. Englisch. Codice articolo 9783330650558

Contatta il venditore

Compra nuovo

EUR 94,90
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Tran, Khoa
Editore: Scholars' Press, 2017
ISBN 10: 3330650559 ISBN 13: 9783330650558
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 268 pages. 8.66x5.91x0.61 inches. In Stock. Codice articolo 3330650559

Contatta il venditore

Compra nuovo

EUR 137,59
Convertire valuta
Spese di spedizione: EUR 11,56
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello