Neuronale Netze programmieren mit Python: Der Einstieg in KI, Machine Learning und Deep Learning. Mit KI-Lernumgebung, Python-Crashkurs, Keras und TensorFlow - Brossura

Schwaiger, Roland; Steinwendner, Joachim

 
9783367102549: Neuronale Netze programmieren mit Python: Der Einstieg in KI, Machine Learning und Deep Learning. Mit KI-Lernumgebung, Python-Crashkurs, Keras und TensorFlow

Sinossi

Geniale Ideen einfach erklärt: der verständliche Einstieg in die KI-Welt

Neuronale Netze sind die Technologie hinter Deep Learning, Machine Learning und generativer Künstlicher Intelligenz wie ChatGPT. Sie revolutionieren derzeit die verschiedensten Anwendungsgebiete vom Strategiespiel bis zur Bild- und Spracherkennung. In neuronalen Netzen stecken geniale Ideen, die sich zum Glück einfach erklären lassen.

Unsere Experten helfen Ihnen dabei, neuronale Netze zu verstehen und selber zu entwickeln. Um sie gewinnbringend einzusetzen, programmieren Sie verschiedene Netztypen selbst nach. Und zwar in Python, der Hauptsprache der KI-Welt. Sie werden sich dabei mit Mathematik und Programmierung befassen, brauchen aber keine konkreten Vorkenntnisse. Roland Schwaiger und Joachim Steinwendner erklären Ihnen alles besonders anschaulich mit zahlreichen Abbildungen. Ein faszinierendes Buch, das Ihnen den Durchblick in der KI-Welt bringt. Komplett in Farbe.

  • Schneller Einstieg mit allen Python- und Mathegrundlagen
  • Lernalgorithmen, Aktivierungsfunktionen, Backpropagation, Transformer-Netze
  • Inkl. Online-Lernumgebung und Einstieg in TensorFlow
  • Komplett in Farbe, mit zahlreichen Abbildungen und Grafiken


Aus dem Inhalt:

  • Die Grundidee hinter Neuronalen Netzen
  • Ein einfaches Neuronales Netz aufbauen
  • Neuronale Netze trainieren
  • Überwachtes und unüberwachtes Lernen
  • Einführung in TensorFlow
  • Kompaktkurs Python
  • Wichtige mathematische Grundlagen
  • Reinforcement Learning
  • Verschiedene Netzarten und ihre Anwendungsbereiche
  • Back Propagation
  • Deep Learning
  • Werkzeuge für Data Scientists

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sugli autori

Dr. Roland Schwaiger ist in so manchen Bereichen der IT-Welt zuhause – Entwickler, Dozent, Forscher und Autor. In seinem Buch „Schrödinger programmiert ABAP“ oder "Neuronale Netze programmieren mit Python" verbindet er technisches Know-how mit einem lockeren, humorvollen Stil, der selbst komplexe Themen verständlich und unterhaltsam macht. Seine berufliche Reise begann nach dem Studium der Informatik und Mathematik an der Bowling Green State University (Ohio, USA) und der Universität Salzburg, wo er in Mathematik/Informatik promovierte. Als Softwareentwickler bei der SAP AG in Walldorf sammelte er praktische Erfahrungen im Bereich Human Resources, bevor er sich der Wirtschaft und anwendungsbezogenen Projekten widmete. Seit Anfang 2000 unterrichtet Dr. Schwaiger an Fachhochschulen, Universitäten und für SAP. Dort bringt er Studierenden und Schulungsteilnehmern die Feinheiten der ABAP-Programmierung und Themen wie künstliche Intelligenz näher. Seine angewandte Forschung dreht sich um Künstliche Neuronale Netze, Evolutionäre Algorithmen und innovative Ansätze in der Softwareentwicklung. Als Geschäftsführer der NoR GmbH, einem Unternehmen mit Fokus auf SAP-HCM, SAP-Technologien und KI, bringt er Praxis und Forschung zusammen. Ob in Vorlesungen, Workshops oder seinem Buch – Dr. Schwaiger vermittelt nicht nur Wissen, sondern auch Begeisterung für die Welt der Informatik.

Prof. Dr. Joachim Steinwendner ist Forschungsfeldleiter für Digital GeoHealth an der Fernfachhochschule Schweiz mit einer fundierten Expertise in Data Science, Maschinellem Lernen, Empfehlungssystemen und Deep Learning. Seine Forschungsarbeit umfasst die Entwicklung und Anwendung Künstlicher Intelligenz, insbesondere Neuronaler Netze, in den Domänen der Gesundheits- und Geoinformatik. Als Dozent an verschiedenen Hochschulen (unter anderem der ETH Zürich) legt er großen Wert darauf, komplexe KI-Technologien didaktisch ansprechend und verständlich zu vermitteln, um Studierende für diese Themen zu begeistern und praxisnah auf die Herausforderungen der digitalen KI-Transformation vorzubereiten.

Dalla quarta di copertina

Grundlagen

Für Ihren leichten Einstieg haben die Autoren eine Lernumgebung vorbereitet, erläutern alle mathematischen Konzepte von Grund auf und fangen mit einfachen Neuronalen Netzen an. Python-Crashkurs inklusive.

Praxis, Praxis, Praxis

Die Theorie ist in diesem Fall wirklich wichtig. Aber dann entwickeln Sie selbst, und zwar verschiedene Netztypen – und wenden sie auf verschiedene Fragestellungen an.

Die Maschinen lernen lassen

Neuronale Netze müssen trainiert werden, und dabei kommt es auf das Wie an! Lernen Sie direkt am Beispiel, Fallstricke zu umgehen, Trainingsdaten geschickt zu nutzen, Werkzeuge auszuwählen und die Trefferquoten ihrer Modelle zu erhöhen.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.