Articoli correlati a Exploring Optimization Algorithms in Machine Learning:...

Exploring Optimization Algorithms in Machine Learning: From Theory to Practice - Brossura

 
9783384275837: Exploring Optimization Algorithms in Machine Learning: From Theory to Practice
  • Editoretredition
  • Data di pubblicazione2024
  • ISBN 10 3384275837
  • ISBN 13 9783384275837
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine340
  • Contatto del produttorenon disponibile

EUR 11,00 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Exploring Optimization Algorithms in Machine Learning:...

Foto dell'editore

Kinky
Editore: Tredition Jul 2024, 2024
ISBN 10: 3384275837 ISBN 13: 9783384275837
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Optimization algorithms in machine learning bridge theoretical foundations with practical applications, crucial for refining model performance. Techniques like gradient descent, stochastic gradient descent (SGD), and advanced methods such as Adam and RMSprop optimize model parameters to minimize error and enhance accuracy. Theoretical understanding encompasses concepts like convexity, convergence criteria, and adaptive learning rates, essential for algorithm selection based on dataset characteristics.In practice, implementing these algorithms involves tuning hyperparameters and assessing trade-offs between computational efficiency and model effectiveness across diverse datasets. Recent innovations, including meta-heuristic algorithms like genetic algorithms, further expand optimization capabilities for complex, non-linear problems.Mastering optimization algorithms empowers practitioners to navigate challenges in model training and deployment effectively, ensuring robust performance in real-world applications. This comprehensive understanding supports innovation in machine learning, driving advancements in various fields from healthcare to finance and beyond. 340 pp. Englisch. Codice articolo 9783384275837

Contatta il venditore

Compra nuovo

EUR 31,26
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Kinky
Editore: Tredition, 2024
ISBN 10: 3384275837 ISBN 13: 9783384275837
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Optimization algorithms in machine learning bridge theoretical foundations with practical applications, crucial for refining model performance. Techniques like gradient descent, stochastic gradient descent (SGD), and advanced methods such as Adam and RMSprop optimize model parameters to minimize error and enhance accuracy. Theoretical understanding encompasses concepts like convexity, convergence criteria, and adaptive learning rates, essential for algorithm selection based on dataset characteristics.In practice, implementing these algorithms involves tuning hyperparameters and assessing trade-offs between computational efficiency and model effectiveness across diverse datasets. Recent innovations, including meta-heuristic algorithms like genetic algorithms, further expand optimization capabilities for complex, non-linear problems.Mastering optimization algorithms empowers practitioners to navigate challenges in model training and deployment effectively, ensuring robust performance in real-world applications. This comprehensive understanding supports innovation in machine learning, driving advancements in various fields from healthcare to finance and beyond. Codice articolo 9783384275837

Contatta il venditore

Compra nuovo

EUR 31,26
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Kinky
Editore: Tredition Gmbh, 2024
ISBN 10: 3384275837 ISBN 13: 9783384275837
Nuovo Paperback

Da: CitiRetail, Stevenage, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Optimization algorithms in machine learning bridge theoretical foundations with practical applications, crucial for refining model performance. Techniques like gradient descent, stochastic gradient descent (SGD), and advanced methods such as Adam and RMSprop optimize model parameters to minimize error and enhance accuracy. Theoretical understanding encompasses concepts like convexity, convergence criteria, and adaptive learning rates, essential for algorithm selection based on dataset characteristics. In practice, implementing these algorithms involves tuning hyperparameters and assessing trade-offs between computational efficiency and model effectiveness across diverse datasets. Recent innovations, including meta-heuristic algorithms like genetic algorithms, further expand optimization capabilities for complex, non-linear problems. Mastering optimization algorithms empowers practitioners to navigate challenges in model training and deployment effectively, ensuring robust performance in real-world applications. This comprehensive understanding supports innovation in machine learning, driving advancements in various fields from healthcare to finance and beyond. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9783384275837

Contatta il venditore

Compra nuovo

EUR 33,67
Convertire valuta
Spese di spedizione: EUR 35,68
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Kinky
Editore: tredition, 2024
ISBN 10: 3384275837 ISBN 13: 9783384275837
Nuovo Taschenbuch

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Exploring Optimization Algorithms in Machine Learning: From Theory to Practice | Kinky | Taschenbuch | Paperback | Englisch | 2024 | tredition | EAN 9783384275837 | Verantwortliche Person für die EU: tredition, Heinz-Beusen-Stieg 5, 22926 Ahrensburg, support[at]tredition[dot]com | Anbieter: preigu. Codice articolo 129556350

Contatta il venditore

Compra nuovo

EUR 31,26
Convertire valuta
Spese di spedizione: EUR 45,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Kinky
Editore: Tredition Gmbh, 2024
ISBN 10: 3384275837 ISBN 13: 9783384275837
Nuovo Paperback

Da: Grand Eagle Retail, Fairfield, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Optimization algorithms in machine learning bridge theoretical foundations with practical applications, crucial for refining model performance. Techniques like gradient descent, stochastic gradient descent (SGD), and advanced methods such as Adam and RMSprop optimize model parameters to minimize error and enhance accuracy. Theoretical understanding encompasses concepts like convexity, convergence criteria, and adaptive learning rates, essential for algorithm selection based on dataset characteristics. In practice, implementing these algorithms involves tuning hyperparameters and assessing trade-offs between computational efficiency and model effectiveness across diverse datasets. Recent innovations, including meta-heuristic algorithms like genetic algorithms, further expand optimization capabilities for complex, non-linear problems. Mastering optimization algorithms empowers practitioners to navigate challenges in model training and deployment effectively, ensuring robust performance in real-world applications. This comprehensive understanding supports innovation in machine learning, driving advancements in various fields from healthcare to finance and beyond. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783384275837

Contatta il venditore

Compra nuovo

EUR 26,19
Convertire valuta
Spese di spedizione: EUR 66,48
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello