Computational Physics: Problem Solving with Python - Brossura

Landau, Rubin H.; Pįez, Manuel J.; Bordeianu, Cristian C.

 
9783527414253: Computational Physics: Problem Solving with Python

Sinossi

The classic in the field for more than 25 years, now with increased emphasis on data science and new chapters on quantum computing, machine learning (AI), and general relativity

Computational physics combines physics, applied mathematics, and computer science in a cutting-edge multidisciplinary approach to solving realistic physical problems. It has become integral to modern physics research because of its capacity to bridge the gap between mathematical theory and real-world system behavior.

Computational Physics provides the reader with the essential knowledge to understand computational tools and mathematical methods well enough to be successful. Its philosophy is rooted in “learning by doing”, assisted by many sample programs in the popular Python programming language. The first third of the book lays the fundamentals of scientific computing, including programming basics, stable algorithms for differentiation and integration, and matrix computing. The latter two-thirds of the textbook cover more advanced topics such linear and nonlinear differential equations, chaos and fractals, Fourier analysis, nonlinear dynamics, and finite difference and finite elements methods. A particular focus in on the applications of these methods for solving realistic physical problems.

Readers of the fourth edition of Computational Physics will also find:

  • An exceptionally broad range of topics, from simple matrix manipulations to intricate computations in nonlinear dynamics
  • A whole suite of supplementary material: Python programs, Jupyter notebooks and videos

Computational Physics is ideal for students in physics, engineering, materials science, and any subjects drawing on applied physics.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Rubin H. Landau is Professor Emeritus in the Department of Physics at Oregon State University in Corvallis. He has been teaching courses in computational physics for over 25 years, was a founder of the Computational Physics Degree Program and the Northwest Alliance for Computational Science and Engineering, and has been using computers in theoretical physics research ever since graduate school. He is author of more than 90 refereed publications and has also authored books on Quantum Mechanics, Workstations and Supercomputers, the first two editions of Computational Physics, and a First Course in Scientific Computing.
 
Manuel J. Pįez is a professor in the Department of Physics at the University of Antioquia in Medellķn, Colombia. He has been teaching courses in Modern Physics, Nuclear Physics, Computational Physics, Mathematical Physics as well as programming in Fortran, Pascal and C languages. He and Professor Landau have conducted pioneering computational investigations in the interactions of mesons and nucleons with nuclei.
 
Cristian C. Bordeianu taught Physics and Computer Science at the Military College "Stefan cel Mare" in Cāmpulung Moldovenesc, Romania.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.