Articoli correlati a Conjectures in Arithmetic Algebraic Geometry: A Survey...

Conjectures in Arithmetic Algebraic Geometry: A Survey (Aspects of Mathematics) (German Edition): 18 - Brossura

 
9783528064334: Conjectures in Arithmetic Algebraic Geometry: A Survey (Aspects of Mathematics) (German Edition): 18

Sinossi

In this expository paper we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued mathematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to intro­ duce L-functions, the main motivation being the calculation of class numbers. In particular, Kummer showed that the class numbers of cyclotomic fields playa decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirich­ let had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by proper­ ties of L-functions. Twentieth century number theory, class field theory and algebraic geometry only strengthen the nineteenth century number theorists's view. We just mention the work of E. Heeke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generaliza­ tion of Dirichlet's L-functions with a generalization of class field the­ ory to non-abelian Galois extensions of number fields in mind. Weil introduced his zeta-function for varieties over finite fields in relation to a problem in number theory.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1 The zero-dimensional case: number fields.- 1.1 Class Numbers.- 1.2 Dirichlet L-Functions.- 1.3 The Class Number Formula.- 1.4 Abelian Number Fields.- 1.5 Non-abelian Number Fields and Artin L-Functions.- 2 The one-dimensional case: elliptic curves.- 2.1 General Features of Elliptic Curves.- 2.2 Varieties over Finite Fields.- 2.3 L-Functions of Elliptic Curves.- 2.4 Complex Multiplication and Modular Elliptic Curves.- 2.5 Arithmetic of Elliptic Curves.- 2.6 The Tate-Shafarevich Group.- 2.7 Curves of Higher Genus.- 2.8 Appendix.- 2.8.1 B & S-D for Abelian Varieties.- 2.8.2 Bloch’s Version of B & S-D.- 2.8.3 1-Motives, Mixed Motives and B & S-D.- 3 The general formalism of L-functions, Deligne cohomology and Poincaré duality theories.- 3.1 The Standard Conjectures.- 3.2 Deligne-Beilinson Cohomology.- 3.3 Deligne Homology.- 3.4 Poincaré Duality Theories.- 4 Riemann-Roch, K-theory and motivic cohomology.- 4.1 Grothendieck-Riemann-Roch.- 4.2 Adams Operations.- 4.3 Riemann-Roch for Singular Varieties.- 4.4 Higher Algebraic K-Theory.- 4.5 Adams Operations in Higher Algebraic K-Theory.- 4.6 Chern Classes in Higher Algebraic K-Theory.- 4.7 Gillet’s Riemann-Roch Theorem.- 4.8 Motivic Cohomology.- 5 Regulators, Deligne’s conjecture and Beilinson’s first conjecture.- 5.1 Borel’s Regulator.- 5.2 Beilinson’s Regulator.- 5.3 Special Cases and Zagier’s Conjecture.- 5.4 Riemann Surfaces.- 5.5 Models over Spec(Z).- 5.6 Deligne’s Conjecture.- 5.7 Beilinson’s First Conjecture.- 6 Beilinson’s second conjecture.- 6.1 Beilinson’s Second Conjecture.- 6.2 Hilbert Modular Surfaces.- 7 Arithmetic intersections and Beilinson’s third conjecture.- 7.1 The Intersection Pairing.- 7.2 Beilinson’s Third Conjecture.- 8 Absolute Hodge cohomology, Hodge and Tate conjectures and Abel-Jacobi maps.- 8.1 The Hodge Conjecture.- 8.2 Absolute Hodge Cohomology.- 8.3 Geometric Interpretation.- 8.4 Abel-Jacobi Maps.- 8.5 The Tate Conjecture.- 8.6 Absolute Hodge Cycles.- 8.7 Motives.- 8.8 Grothendieck’s Conjectures.- 8.9 Motives and Cohomology.- 9 Mixed realizations, mixed motives and Hodge and Tate conjectures for singular varieties.- 9.1 Tate Modules.- 9.2 Mixed Realizations.- 9.3 Weights.- 9.4 Hodge and Tate Conjectures.- 9.5 The Homological Regulator.- 10 Examples and Results.- 10.1 B & S-D revisited.- 10.2 Deligne’s Conjecture.- 10.3 Artin and Dirichlet Motives.- 10.4 Modular Curves.- 10.5 Other Modular Examples.- 10.6 Linear Varieties.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreVieweg+Teubner Verlag
  • Data di pubblicazione2012
  • ISBN 10 3528064331
  • ISBN 13 9783528064334
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine252
  • Contatto del produttorenon disponibile

Compra usato

Condizioni: buono
Cover Ecke leicht beschädigt
Visualizza questo articolo

EUR 9,90 per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783663095064: Conjectures in Arithmetic Algebraic Geometry: A Survey

Edizione in evidenza

ISBN 10:  3663095061 ISBN 13:  9783663095064
Casa editrice: Vieweg+Teubner Verlag, 2014
Brossura

Risultati della ricerca per Conjectures in Arithmetic Algebraic Geometry: A Survey...

Foto dell'editore

Hulsbergen, Wilfred W. J.
Editore: Vieweg+Teubner Verlag, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Antico o usato Brossura

Da: Buchmarie, Darmstadt, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Good. Cover Ecke leicht beschädigt. Codice articolo 3514795_e68_3x

Contatta il venditore

Compra usato

EUR 47,68
Convertire valuta
Spese di spedizione: EUR 9,90
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Wilfred W. J. Hulsbergen
Editore: Vieweg+Teubner Verlag, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1 The zero-dimensional case: number fields.- 1.1 Class Numbers.- 1.2 Dirichlet L-Functions.- 1.3 The Class Number Formula.- 1.4 Abelian Number Fields.- 1.5 Non-abelian Number Fields and Artin L-Functions.- 2 The one-dimensional case: elliptic curves.- 2.1 G. Codice articolo 458647907

Contatta il venditore

Compra nuovo

EUR 48,37
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Wilfred W J Hulsbergen
Editore: Springer Vieweg Jan 1992, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In this expository paper we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued mathematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to intro duce L-functions, the main motivation being the calculation of class numbers. In particular, Kummer showed that the class numbers of cyclotomic fields playa decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirich let had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by proper ties of L-functions. Twentieth century number theory, class field theory and algebraic geometry only strengthen the nineteenth century number theorists's view. We just mention the work of E. Heeke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generaliza tion of Dirichlet's L-functions with a generalization of class field the ory to non-abelian Galois extensions of number fields in mind. Weil introduced his zeta-function for varieties over finite fields in relation to a problem in number theory. 240 pp. Deutsch. Codice articolo 9783528064334

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Hulsbergen, Wilfred W. J.
Editore: Vieweg+Teubner Verlag, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Antico o usato Rilegato Prima edizione

Da: Jackson Street Booksellers, Omaha, NE, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Fine. No Jacket. 1st Edition. Fine in Hardcover. 236pp 8vo. Codice articolo 162939

Contatta il venditore

Compra usato

EUR 31,62
Convertire valuta
Spese di spedizione: EUR 35,09
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Wilfred W. J. Hulsbergen
Editore: Vieweg+Teubner Verlag, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this expository paper we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued mathematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to intro duce L-functions, the main motivation being the calculation of class numbers. In particular, Kummer showed that the class numbers of cyclotomic fields playa decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirich let had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by proper ties of L-functions. Twentieth century number theory, class field theory and algebraic geometry only strengthen the nineteenth century number theorists's view. We just mention the work of E. Heeke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generaliza tion of Dirichlet's L-functions with a generalization of class field the ory to non-abelian Galois extensions of number fields in mind. Weil introduced his zeta-function for varieties over finite fields in relation to a problem in number theory. Codice articolo 9783528064334

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Wilfred W. J. Hulsbergen
ISBN 10: 3528064331 ISBN 13: 9783528064334
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -In this expository paper we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued mathematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to intro duce L-functions, the main motivation being the calculation of class numbers. In particular, Kummer showed that the class numbers of cyclotomic fields playa decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirich let had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by proper ties of L-functions. Twentieth century number theory, class field theory and algebraic geometry only strengthen the nineteenth century number theorists's view. We just mention the work of E. Heeke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generaliza tion of Dirichlet's L-functions with a generalization of class field the ory to non-abelian Galois extensions of number fields in mind. Weil introduced his zeta-function for varieties over finite fields in relation to a problem in number theory.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 252 pp. Englisch. Codice articolo 9783528064334

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Hulsbergen, Wilfred W. J.
Editore: Vieweg+Teubner Verlag, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783528064334

Contatta il venditore

Compra nuovo

EUR 61,44
Convertire valuta
Spese di spedizione: EUR 7,89
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Hulsbergen, Wilfred W. J.
Editore: Vieweg+Teubner Verlag, 1992
ISBN 10: 3528064331 ISBN 13: 9783528064334
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783528064334_new

Contatta il venditore

Compra nuovo

EUR 62,11
Convertire valuta
Spese di spedizione: EUR 10,67
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Hulsbergen, Wilfred W. J.
ISBN 10: 3528064331 ISBN 13: 9783528064334
Antico o usato Rilegato

Da: Book Bear, West Brookfield, MA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Very Good. Condizione sovraccoperta: No Dust Jacket. 236 pp. Tightly bound. Tip of top right corner front board with light bump. Text is free of markings. No ownership markings. No dust jacket. Printed boards. Codice articolo 031483

Contatta il venditore

Compra usato

EUR 31,62
Convertire valuta
Spese di spedizione: EUR 42,97
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Hulsbergen, Wilfred W. J.
ISBN 10: 3528064331 ISBN 13: 9783528064334
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9783528064334

Contatta il venditore

Compra nuovo

EUR 52,61
Convertire valuta
Spese di spedizione: EUR 23,72
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Vedi altre 6 copie di questo libro

Vedi tutti i risultati per questo libro