Articoli correlati a Ball and Surface Arithmetics: 29

Ball and Surface Arithmetics: 29 - Rilegato

 
9783528065119: Ball and Surface Arithmetics: 29

Sinossi

Bei hoherdimensionalen komplexen Mannigfaltigkeiten stellt die Riemann-Roch-Theorie die grundlegende Verbindung von analytischen bzw. algebraischen zu topologischen Eigenschaften her. Dieses Buch befasst sich mit Mannigfaltigkeiten der komplexen Dimension 2, d. h. mit komplexen Flachen. Hauptziel der Monographie ist es, neue rationale diskrete Invarianten (Hohen) in die Theorie komplexer Flachen explizit einzufuhren und ihre Anwendbarkeit auf konkrete aktuelle Probleme darzustellen.Als erste unmittelbare Anwendung erhalt man explizit und ganz allgemein Formeln vom Hurwitz-Typ endlicher Flachenuberlagerungen fur die vier klassischen Invarianten, die auf andere Weise bisher nur in Spezialfallen zuganglich waren. Ein weiteres Anwendungsgebiet ist die Theorie der Picardschen Modulflachen: Neue Resultate werden beschrieben. Letztendlich kann im letzten Kapitel eine Erganzung des bekannten Satzes von Bogomolov-Miyaoka-Yau mit Hilfe der Hohentheorie gezeigt werden. The monograph presents basically an arithmetic theory of orbital surfaces with cusp singularities. As main invariants orbital hights are introduced, not only for the surfaces but also for the components of orbital cycles. These invariants are rational numbers with nice functorial properties allowing precise formulas of Hurwitz type and a fine intersection theory for orbital cycles. For ball quotient surfaces they appear as volumes of fundamental domains. In the special case of Picard modular surfaces they are discovered by special value of Dirichlet L-series or higher Bernoulli numbers. As a central point of the monograph a general Proportionality Theorem in terms of orbital hights is proved. It yields a strong criterion to decide effectively whether a surface with given cycle supports a ball quotient structure being Kaehler-Einstein with negative constant holomorphic sectional curvature outside of this cycle. The theory is applied to the classification of Picard modular surfaces and to surfaces geography.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Dr. Rolf-Peter Holzapfel ist Mitglied der Arbeitsgruppe "Allgebraische Geometrie und Zahlentheorie" am Max-Planck-Institut zur Förderung der Wissenschaften, Berlin.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: ottimo
Zust: Gutes Exemplar. 414 Seiten...
Visualizza questo articolo

EUR 9,95 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783322901712: Ball and Surface Arithmetics: 29

Edizione in evidenza

ISBN 10:  3322901718 ISBN 13:  9783322901712
Casa editrice: Vieweg+Teubner Verlag, 2012
Brossura

Risultati della ricerca per Ball and Surface Arithmetics: 29

Foto dell'editore

Holzapfel, Rolf-Peter;
ISBN 10: 3528065117 ISBN 13: 9783528065119
Antico o usato Karton

Da: Antiquariat Bernhardt, Kassel, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Karton. Condizione: Sehr gut. Zust: Gutes Exemplar. 414 Seiten, mit Abbildungen, Englisch 714g. Codice articolo 494344

Contatta il venditore

Compra usato

EUR 116,00
Convertire valuta
Spese di spedizione: EUR 9,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello