Let K be an algebraic number field. The function attaching to each elliptic curve over K its conductor is constant on isoger. y classes of elliptic curves over K (for the definitions see chapter 1). ~Ioreover, for a given ideal a in OK the number of isogeny classes of elliptic curves over K with conductor a is finite. In these notes we deal with the following problem: How can one explicitly construct a set of representatives for the isogeny classes of elliptic curves over K with conductor a for a given ideal a in OK? The conductor of an elliptic curve over K is a numerical invariant which measures, in some sense, the badness of the reduction of the elliptic curve modulo the prime ideals in OK' It plays an important role in the famous Weil-Langlands conjecture on the connection between elliptic curves over K and congruence subgroups in 5L2(OK) • In case K ~ this connection can be stated as follows. For any ideal a = (N) in ~ let ro(N) be the congruence subgroup ro(N) { (: ~) E 5L2 (~) c E (N) } of 5L2 (~) and let 52 (fo (N» be the space of cusp forms of weight 2 for r 0 (N) Now Weil conjectured that there exists a bijection between the rational normalized eigenforms in 52(ro(N» for the Heckealgebra and the - 2 - Lsug~ny classes uf elliptic curves over ~ with conductor a = (N) .
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1. Reduction of elliptic curves.- 2. Elliptic curves with good reduction outside a given set of prime ideals.- 3. The diophantine equation x3 ? y2 = r.- 4. Isogeny Classes.- 5. Review on explicit results.- References.- Index of special symbols.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,50 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Antiquariat Silvanus - Inhaber Johannes Schaefer, Ahrbrück, Germania
VI, 213 Seiten, 352808569X Sprache: Englisch Gewicht in Gramm: 320 Groß 8°, Original-Karton (Softcover), wenige Seiten mit Abdruck einer Büroklammer, insgesamt gutes und innen sauberes Exemplar, Codice articolo 47828
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1. Reduction of elliptic curves.- 2. Elliptic curves with good reduction outside a given set of prime ideals.- 3. The diophantine equation x3 ? y2 = r.- 4. Isogeny Classes.- 5. Review on explicit results.- References.- Index of special symbols.Let K. Codice articolo 4867346
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Let K be an algebraic number field. The function attaching to each elliptic curve over K its conductor is constant on isoger. y classes of elliptic curves over K (for the definitions see chapter 1). ~Ioreover, for a given ideal a in OK the number of isogeny classes of elliptic curves over K with conductor a is finite. In these notes we deal with the following problem: How can one explicitly construct a set of representatives for the isogeny classes of elliptic curves over K with conductor a for a given ideal a in OK The conductor of an elliptic curve over K is a numerical invariant which measures, in some sense, the badness of the reduction of the elliptic curve modulo the prime ideals in OK' It plays an important role in the famous Weil-Langlands conjecture on the connection between elliptic curves over K and congruence subgroups in 5L2(OK) In case K ~ this connection can be stated as follows. For any ideal a = (N) in ~ let ro(N) be the congruence subgroup ro(N) { (: ~) E 5L2 (~) c E (N) } of 5L2 (~) and let 52 (fo (N' be the space of cusp forms of weight 2 for r 0 (N) Now Weil conjectured that there exists a bijection between the rational normalized eigenforms in 52(ro(N' for the Heckealgebra and the - 2 - Lsug~ny classes uf elliptic curves over ~ with conductor a = (N) . 213 pp. Deutsch. Codice articolo 9783528085698
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783528085698_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Let K be an algebraic number field. The function attaching to each elliptic curve over K its conductor is constant on isoger. y classes of elliptic curves over K (for the definitions see chapter 1). ~Ioreover, for a given ideal a in OK the number of isogeny classes of elliptic curves over K with conductor a is finite. In these notes we deal with the following problem: How can one explicitly construct a set of representatives for the isogeny classes of elliptic curves over K with conductor a for a given ideal a in OK The conductor of an elliptic curve over K is a numerical invariant which measures, in some sense, the badness of the reduction of the elliptic curve modulo the prime ideals in OK' It plays an important role in the famous Weil-Langlands conjecture on the connection between elliptic curves over K and congruence subgroups in 5L2(OK) In case K ~ this connection can be stated as follows. For any ideal a = (N) in ~ let ro(N) be the congruence subgroup ro(N) { (: ~) E 5L2 (~) c E (N) } of 5L2 (~) and let 52 (fo (N' be the space of cusp forms of weight 2 for r 0 (N) Now Weil conjectured that there exists a bijection between the rational normalized eigenforms in 52(ro(N' for the Heckealgebra and the - 2 - Lsug~ny classes uf elliptic curves over ~ with conductor a = (N) . Codice articolo 9783528085698
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Let K be an algebraic number field. The function attaching to each elliptic curve over K its conductor is constant on isoger. y classes of elliptic curves over K (for the definitions see chapter 1). ~Ioreover, for a given ideal a in OK the number of isogeny classes of elliptic curves over K with conductor a is finite. In these notes we deal with the following problem: How can one explicitly construct a set of representatives for the isogeny classes of elliptic curves over K with conductor a for a given ideal a in OK The conductor of an elliptic curve over K is a numerical invariant which measures, in some sense, the badness of the reduction of the elliptic curve modulo the prime ideals in OK' It plays an important role in the famous Weil-Langlands conjecture on the connection between elliptic curves over K and congruence subgroups in 5L2(OK) ¿ In case K ~ this connection can be stated as follows. For any ideal a = (N) in ~ let ro(N) be the congruence subgroup ro(N) { (: ~) E 5L2 (~) c E (N) } of 5L2 (~) and let 52 (fo (N» be the space of cusp forms of weight 2 for r 0 (N) Now Weil conjectured that there exists a bijection between the rational normalized eigenforms in 52(ro(N» for the Heckealgebra and the - 2 - Lsug~ny classes uf elliptic curves over ~ with conductor a = (N) .Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 220 pp. Deutsch. Codice articolo 9783528085698
Quantità: 2 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783528085698
Quantità: 10 disponibili
Da: Munster & Company LLC, ABAA/ILAB, Corvallis, OR, U.S.A.
Condizione: Good. Friedrick Vieweg & Son, 1983. Cover very faintly soiled/rubbed, edges very faintly rubbed/bumped, otherwise intact; fore-edge ever-so-slightly soiled; binding tight; edges and interior intact and very clean except where noted. paperback. Good. Codice articolo 597041
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783528085698
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 220. Codice articolo 26101411281
Quantità: 4 disponibili