This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate if the distributions of both the errors and the regressors have fat tails. This study also improves and extends the NL2SLSE theory of Amemiya. The method involved is a variant of the instrumental variables method, requiring at least as many instrumental variables as parameters to be estimated. The new MIE method requires less instrumental variables. Asymptotic normality can be derived by employing only one instrumental variable and consistency can even be proved with out using any instrumental variables at all.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Introduction.- 1.1 Specification and misspecification of the econometric model.- 1.2 The purpose and scope of this study.- 2 Preliminary Mathematics.- 2.1 Random variables, independence, Borel measurable functions and mathematical expectation.- 2.1.1 Measure theoretical foundation of probability theory.- 2.1.2 Independence.- 2.1.3 Borel measurable functions.- 2.1.4 Mathematical expectation.- 2.2 Convergence of random variables and distributions.- 2.2.1 Weak and strong convergence of random variables.- 2.2.2 Convergence of mathematical expectations.- 2.2.3 Convergence of distributions.- 2.2.4 Convergence of distributions and mathematical expectations.- 2.3 Uniform convergence of random functions.- 2.3.1 Random functions. Uniform strong and weak convergence.- 2.3.2 Uniform strong and weak laws of large numbers.- 2.4 Characteristic functions, stable distributions and a central limit theorem.- 2.5 Unimodal distributions.- 3 Nonlinear Regression Models.- 3.1 Nonlinear least-squares estimation.- 3.1.1 Model and estimator.- 3.1.2 Strong consistency.- 3.1.3 Asymptotic normality.- 3.1.4 Weak consistency and asymptotic normality under weaker conditions.- 3.1.5 Asymptotic properties if the error distribution has infinite variance. Symmetric stable error distributions.- 3.2 A class of nonlinear robust M-estimators.- 3.2.1 Introduction.- 3.2.2 Strong consistency.- 3.2.3 Asymptotic normality.- 3.2.4 Properties of the function h(?). Asymptotic efficiency and robustness.- 3.2.5 A uniformly consistent estimator of the function h(?).- 3.2.6 A two-stage robust M-estimator.- 3.2.7 Some weaker results.- 3.3 Weighted nonlinear robust M-estimation.- 3.3.1 Introduction.- 3.3.2 Strong consistency and asymptotic normality.- 3.3.3 A two-stage weighted robust M-estimator.- 3.4 Miscellaneous notes on robust M-estimation.- 3.4.1 Uniform consistency.- 3.4.2 The symmetric unimodality assumption.- 3.4.3 The function ?.- 3.4.4 How to decide to apply robust M-estimation.- 4 Nonlinear Structural Equations.- 4.1 Nonlinear two-stage least squares.- 4.1.1 Introduction.- 4.1.2 Strong consistency.- 4.1.3 Asymptotic normality.- 4.1.4 Weak consistency.- 4.2 Minimum information estimators: introduction.- 4.2.1 Lack of instruments.- 4.2.2 Identification without using instrumental variables.- 4.2.3 Consistent estimation without using instrumental variables.- 4.2.4 Asymptotic normality.- 4.2.5 A problem concerning the nonsingularity assumption.- 4.3 Minimum information estimators: instrumental variable and scaling parameter.- 4.3.1 An instrumental variable.- 4.3.2 An example.- 4.3.3 A scaling parameter and its impact on the asymptotic properties.- 4.3.4 Estimation of the asymptotic variance matrix.- 4.3.5 A two-stage estimator.- 4.3.6 Weak consistency.- 4.4 Miscellaneous notes on minimum information estimation.- 4.4.1 Remarks on the function $$S_{ - n}^* (\theta |\gamma )$$.- 4.4.2 A consistent initial value.- 4.4.3 An upperbound of the variance matrix.- 4.4.4 A note on the symmetry assumption.- 5 Nonlinear Models with Lagged Dependent Variables.- 5.1 Stochastic stability.- 5.1.1 Stochastically stable linear autoregressive processes.- 5.1.2 Multivariate stochastically stable processes.- 5.1.3 Other examples of stochastically stable processes.- 5.2 Limit theorem for stochastically stable processes.- 5.2.1 A uniform weak law of large numbers.- 5.2.2 Martingales.- 5.2.3 Central limit theorem for stochastically stable martingale differences.- 5.3 Dynamic nonlinear regression models and implicit structural equations.- 5.3.1 Dynamic nonlinear regression models.- 5.3.2 Dynamic nonlinear implicit structural equations.- 5.4 Remarks on the stochastic stability concept.- 6 Some Applications.- 6.1 Applications of robust M-estimation.- 6.1.1 Municipal expenditure.- 6.1.2 An autoregressive model of money demand.- 6.2 An application of minimum information estimation.- References.
Book by Bierens H J
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,80 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Anybook.com, Lincoln, Regno Unito
Condizione: Good. Volume 192. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. Clean from markings. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,400grams, ISBN:3540108386. Codice articolo 9848006
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the dat. Codice articolo 4881116
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate if the distributions of both the errors and the regressors have fat tails. This study also improves and extends the NL2SLSE theory of Amemiya. The method involved is a variant of the instrumental variables method, requiring at least as many instrumental variables as parameters to be estimated. The new MIE method requires less instrumental variables. Asymptotic normality can be derived by employing only one instrumental variable and consistency can even be proved with out using any instrumental variables at all. Codice articolo 9783540108382
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate if the distributions of both the errors and the regressors have fat tails. This study also improves and extends the NL2SLSE theory of Amemiya. The method involved is a variant of the instrumental variables method, requiring at least as many instrumental variables as parameters to be estimated. The new MIE method requires less instrumental variables. Asymptotic normality can be derived by employing only one instrumental variable and consistency can even be proved with out using any instrumental variables at all.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch. Codice articolo 9783540108382
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540108382_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9783540108382
Quantità: 10 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 216. Codice articolo 2648018344
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 216 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Codice articolo 44764279
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 216. Codice articolo 1848018338
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 207 pages. German language. 9.53x6.54x0.55 inches. In Stock. Codice articolo x-3540108386
Quantità: 2 disponibili