Articoli correlati a State Space Modeling of Time Series

State Space Modeling of Time Series - Brossura

 
9783540172574: State Space Modeling of Time Series

Sinossi

model's predictive capability? These are some of the questions that need to be answered in proposing any time series model construction method. This book addresses these questions in Part II. Briefly, the covariance matrices between past data and future realizations of time series are used to build a matrix called the Hankel matrix. Information needed for constructing models is extracted from the Hankel matrix. For example, its numerically determined rank will be the di­ mension of the state model. Thus the model dimension is determined by the data, after balancing several sources of error for such model construction. The covariance matrix of the model forecasting error vector is determined by solving a certain matrix Riccati equation. This matrix is also the covariance matrix of the innovation process which drives the model in generating model forecasts. In these model construction steps, a particular model representation, here referred to as balanced, is used extensively. This mode of model representation facilitates error analysis, such as assessing the error of using a lower dimensional model than that indicated by the rank of the Hankel matrix. The well-known Akaike's canonical correlation method for model construc­ tion is similar to the one used in this book. There are some important differ­ ences, however. Akaike uses the normalized Hankel matrix to extract canonical vectors, while the method used in this book does not normalize the Hankel ma­ trix.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

Contents: Introduction.- The Notion of State.- Representation of Time Series.- State Space and ARMA Representation.- Properties of State Space Models.- Innovation Processes.- Kalman Filters.- State Vectors and Optimality Measures.- Computation of System Matrices.- Approximate Models and Error Analysis.- Numerical Examples.- Appendices.- References.- Subject Index.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: discreto
This is an ex-library book and...
Visualizza questo articolo

EUR 9,81 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

Risultati della ricerca per State Space Modeling of Time Series

Foto dell'editore

Aoki, M
Editore: Springer Verlag, 1987
ISBN 10: 3540172572 ISBN 13: 9783540172574
Antico o usato Brossura

Da: Anybook.com, Lincoln, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. Clean from markings. In fair condition, suitable as a study copy. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,750grams, ISBN:3540172572. Codice articolo 7060857

Contatta il venditore

Compra usato

EUR 23,34
Convertire valuta
Spese di spedizione: EUR 9,81
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello