How can one exchange information e?ectively when the medium of com- nication introduces errors? This question has been investigated extensively starting with the seminal works of Shannon (1948) and Hamming (1950), and has led to the rich theory of error-correcting codes . This theory has traditionally gone hand in hand with the algorithmic theory of decoding that tackles the problem of recovering from the errors e?ciently. This thesis presents some spectacular new results in the area of decoding algorithms for error-correctingcodes. Speci?cally,itshowshowthenotionof list-decoding can be applied to recover from far more errors, for a wide variety of err- correcting codes, than achievable before. A brief bit of background: error-correcting codes are combinatorial str- tures that show how to represent (or encode ) information so that it is - silient to a moderate number of errors. Speci?cally, an error-correcting code takes a short binary string, called the message, and shows how to transform it into a longer binary string, called the codeword, so that if a small number of bits of the codewordare ?ipped, the resulting string does not look like any other codeword. The maximum number of errorsthat the code is guaranteed to detect, denoted d, is a central parameter in its design. A basic property of such a code is that if the number of errors that occur is known to be smaller than d/2, the message is determined uniquely. This poses a computational problem,calledthedecodingproblem:computethemessagefromacorrupted codeword, when the number of errors is less than d/2.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Introduction.- 1 Introduction.- 2 Preliminaries and Monograph Structure.- I Combinatorial Bounds.- 3 Johnson-Type Bounds and Applications to List Decoding.- 4 Limits to List Decodability.- 5 List Decodability Vs. Rate.- II Code Constructions and Algorithms.- 6 Reed-Solomon and Algebraic-Geometric Codes.- 7 A Unified Framework for List Decoding of Algebraic Codes.- 8 List Decoding of Concatenated Codes.- 9 New, Expander-Based List Decodable Codes.- 10 List Decoding from Erasures.- III Applications.- Interlude.- III Applications.- 11 Linear-Time Codes for Unique Decoding.- 12 Sample Applications Outside Coding Theory.- 13 Concluding Remarks.- A GMD Decoding of Concatenated Codes.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 4,70 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 3,41 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Grey Matter Books, Hadley, MA, U.S.A.
Paperback. Condizione: Very Good. Text is unmarked; pages are bright. Binding is sturdy. Covers are lightly worn around the corners. Codice articolo 071692
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020163842
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 3337498-n
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condizione: new. Paperback. This monograph is a thoroughly revised and extended version of the author's PhD thesis, which was selected as the winning thesis of the 2002 ACM Doctoral Dissertation Competition. Venkatesan Guruswami did his PhD work at the MIT with Madhu Sudan as thesis adviser.Starting with the seminal work of Shannon and Hamming, coding theory has generated a rich theory of error-correcting codes. This theory has traditionally gone hand in hand with the algorithmic theory of decoding that tackles the problem of recovering from the transmission errors efficiently. This book presents some spectacular new results in the area of decoding algorithms for error-correcting codes. Specificially, it shows how the notion of list-decoding can be applied to recover from far more errors, for a wide variety of error-correcting codes, than achievable before The style of the exposition is crisp and the enormous amount of information on combinatorial results, polynomial time list decoding algorithms, and applications is presented in well structured form. Speci?cally, an error-correcting code takes a short binary string, called the message, and shows how to transform it into a longer binary string, called the codeword, so that if a small number of bits of the codewordare ?ipped, the resulting string does not look like any other codeword. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783540240518
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 3337498
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783540240518
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540240518_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783540240518
Quantità: 10 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 3337498-n
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph is a thoroughly revised and extended version of the author's PhD thesis, which was selected as the winning thesis of the 2002 ACM Doctoral Dissertation Competition. Venkatesan Guruswami did his PhD work at the MIT with Madhu Sudan as thesis adviser.Starting with the seminal work of Shannon and Hamming, coding theory has generated a rich theory of error-correcting codes. This theory has traditionally gone hand in hand with the algorithmic theory of decoding that tackles the problem of recovering from the transmission errors efficiently. This book presents some spectacular new results in the area of decoding algorithms for error-correcting codes. Specificially, it shows how the notion of list-decoding can be applied to recover from far more errors, for a wide variety of error-correcting codes, than achievable before.The style of the exposition is crisp and the enormous amount of information on combinatorial results, polynomial time list decoding algorithms, and applications is presented in well structured form. 376 pp. Englisch. Codice articolo 9783540240518
Quantità: 2 disponibili