The3rdInternationalWorkshoponKnowledgeDiscoveryinInductiveDatabases (KDID 2004) was held in Pisa, Italy, on September 20, 2004 as part of the 15th European Conference on Machine Learning and the 8th European Conference onPrinciplesandPracticeofKnowledgeDiscoveryinDatabases(ECML/PKDD 2004). Ever since the start of the ?eld of data mining, it has been realized that the knowledge discovery and data mining process should be integrated into database technology. This idea has been formalized in the concept of inductive databases, introduced by Imielinski and Mannila (CACM 1996, 39(11)). In general, an inductive database is a database that supports data mining and the knowledge discovery process in a natural and elegant way. In addition to the usual data, it also contains inductive generalizations (e.g., patterns, models) extracted from the data. Within this framework, knowledge discovery is an - teractive process in which users can query the inductive database to gain insight to the data and the patterns and models within that data. Despite many recent developments, there still exists a pressing need to - derstandthecentralissuesininductivedatabases.Thisworkshopaimedtobring together database and data mining researchers and practitioners who are int- ested in the numerous challenges that inductive databases o?ers. This workshop followed the previous two workshops: KDID 2002 held in Helsinki, Finland, and KDID 2003 held in Cavtat-Dubrovnik, Croatia.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Invited Paper.- Models and Indices for Integrating Unstructured Data with a Relational Database.- Contributed Papers.- Constraint Relaxations for Discovering Unknown Sequential Patterns.- Mining Formal Concepts with a Bounded Number of Exceptions from Transactional Data.- Theoretical Bounds on the Size of Condensed Representations.- Mining Interesting XML-Enabled Association Rules with Templates.- Database Transposition for Constrained (Closed) Pattern Mining.- An Efficient Algorithm for Mining String Databases Under Constraints.- An Automata Approach to Pattern Collections.- Implicit Enumeration of Patterns.- Condensed Representation of EPs and Patterns Quantified by Frequency-Based Measures.
Book by None
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 5,96 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 3,40 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: GuthrieBooks, Spring Branch, TX, U.S.A.
Paperback. Condizione: Very Good. Ex-library paperback in very nice condition with the usual markings and attachments. Codice articolo UTD1520470
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020164072
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 5906905-n
Quantità: Più di 20 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783540250821
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540250821_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9783540250821
Quantità: 10 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The3rdInternationalWorkshoponKnowledgeDiscoveryinInductiveDatabases (KDID 2004) was held in Pisa, Italy, on September 20, 2004 as part of the 15th European Conference on Machine Learning and the 8th European Conference onPrinciplesandPracticeofKnowledgeDiscoveryinDatabases(ECML/PKDD 2004). Ever since the start of the eld of data mining, it has been realized that the knowledge discovery and data mining process should be integrated into database technology. This idea has been formalized in the concept of inductive databases, introduced by Imielinski and Mannila (CACM 1996, 39(11)). In general, an inductive database is a database that supports data mining and the knowledge discovery process in a natural and elegant way. In addition to the usual data, it also contains inductive generalizations (e.g., patterns, models) extracted from the data. Within this framework, knowledge discovery is an - teractive process in which users can query the inductive database to gain insight to the data and the patterns and models within that data. Despite many recent developments, there still exists a pressing need to - derstandthecentralissuesininductivedatabases.Thisworkshopaimedtobring together database and data mining researchers and practitioners who are int- ested in the numerous challenges that inductive databases o ers. This workshop followed the previous two workshops: KDID 2002 held in Helsinki, Finland, and KDID 2003 held in Cavtat-Dubrovnik, Croatia. 204 pp. Englisch. Codice articolo 9783540250821
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 5906905-n
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 208. Codice articolo 263092763
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 208 Illus. Codice articolo 5803716
Quantità: 4 disponibili