Focuses on the analysis, optimization and controllability of time-discrete dynamical systems and games under the aspect of stability, controllability and (for games) cooperative and non-cooperative treatment. The investigation of stability is based on Lyapunov's method which is generalized to non-autonomous systems. Optimization and controllability of dynamical systems is treated, among others, with the aid of mapping theorems such as implicit function theorem and inverse mapping theorem. Dynamical games are treated as cooperative and non-cooperative games and are used in order to deal with the problem of carbon dioxide reduction under economic aspects. The theoretical results are demonstrated by various applications.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Uncontrolled Systems.- Controlled Systems.- Controllability and Optimization.- A.1 The Core of a Cooperative n-Person Game.- A.2 The Core of a Linear Production Game.- A.3 Weak Pareto Optima: Necessary and Sufficient Conditions.- A.4 Duality.- B Bibliographical Remarks.- References.- About the Authors.
Book by Krabs Werner
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 3,40 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020166139
Quantità: Più di 20 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783540403272
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540403272_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783540403272
Quantità: 10 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Focuseson the analysis, optimization and controllability of time-discrete dynamical systems and games under the aspect of stability, controllability and (for games) cooperative and non-cooperative treatment. The investigation of stability is based on Lyapunov's method which is generalized to non-autonomous systems. Optimization and controllability of dynamical systems is treated, among others, with the aid of mapping theorems such as implicit function theorem and inverse mapping theorem. Dynamical games are treated as cooperative and non-cooperative games and are used in order to deal with the problem of carbon dioxide reduction under economic aspects. The theoretical results are demonstrated by various applications. 204 pp. Englisch. Codice articolo 9783540403272
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 208. Codice articolo 263100499
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 208 Illus. Codice articolo 5828748
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 208. Codice articolo 183100505
Quantità: 4 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Focuses on the analysis, optimization and controllability of time-discrete dynamical systems and games under the aspect of stability, controllability and (for games) cooperative and non-cooperative treatment. The investigation of stability is based . Codice articolo 4888695
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -J. P. La Salle has developed in [20] a stability theory for systems of difference equations (see also [8]) which we introduce in the first chapter within the framework of metric spaces. The stability theory for such systems can also be found in [13] in a slightly modified form. We start with autonomous systems in the first section of chapter 1. After theoretical preparations we examine the localization of limit sets with the aid of Lyapunov Functions. Applying these Lyapunov Functions we can develop a stability theory for autonomous systems. If we linearize a non-linear system at a fixed point we are able to develop a stability theory for fixed points which makes use of the Frechet derivative at the fixed point. The next subsection deals with general linear systems for which we intro duce a new concept of stability and asymptotic stability that we adopt from [18]. Applications to various fields illustrate these results. We start with the classical predator-prey-model as being developed and investigated by Volterra which is based on a 2 x 2-system of first order differential equations for the densities of the prey and predator population, respectively. This model has also been investigated in [13] with respect to stability of its equilibrium via a Lyapunov function. Here we consider the discrete version of the model.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 204 pp. Englisch. Codice articolo 9783540403272
Quantità: 2 disponibili