Diophantine Approximation is a branch of Number Theory having its origins intheproblemofproducing best rationalapproximationstogivenrealn- bers. Since the early work of Lagrange on Pell s equation and the pioneering work of Thue on the rational approximations to algebraic numbers of degree ? 3, it has been clear how, in addition to its own speci?c importance and - terest, the theory can have fundamental applications to classical diophantine problems in Number Theory. During the whole 20th century, until very recent times, this fruitful interplay went much further, also involving Transcend- tal Number Theory and leading to the solution of several central conjectures on diophantine equations and class number, and to other important achie- ments. These developments naturally raised further intensive research, so at the moment the subject is a most lively one. This motivated our proposal for a C. I. M. E. session, with the aim to make it available to a public wider than specialists an overview of the subject, with special emphasis on modern advances and techniques. Our project was kindly supported by the C. I. M. E. Committee and met with the interest of a largenumberofapplicants;forty-twoparticipantsfromseveralcountries,both graduatestudentsandseniormathematicians,intensivelyfollowedcoursesand seminars in a friendly and co-operative atmosphere. The main part of the session was arranged in four six-hours courses by Professors D. Masser (Basel), H. P. Schlickewei (Marburg), W. M. Schmidt (Boulder) and M. Waldschmidt (Paris VI). This volume contains expanded notes by the authors of the four courses, together with a paper by Professor Yu. V.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Heights, Transcendence, and Linear Independence on Commutative Group Varieties.- Linear Forms in Logarithms of Rational Numbers.- Approximation of Algebraic Numbers.- Linear Recurrence Sequences.- Linear Independence Measures for Logarithms of Algebraic Numbers.
Book by Masser David Nesterenko Yuri V Schlickewei Hans Pe
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,21 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiGRATIS per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-267237
Quantità: 1 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-84733
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Codice articolo 4888731
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Diophantine Approximation is a branch of Number Theory having its origins intheproblemofproducing'best'rationalapproximationstogivenrealn- bers. Since the early work of Lagrange on Pell's equation and the pioneering work of Thue on the rational approximations to algebraic numbers of degree 3, it has been clear how, in addition to its own speci c importance and - terest, the theory can have fundamental applications to classical diophantine problems in Number Theory. During the whole 20th century, until very recent times, this fruitful interplay went much further, also involving Transcend- tal Number Theory and leading to the solution of several central conjectures on diophantine equations and class number, and to other important achie- ments. These developments naturally raised further intensive research, so at the moment the subject is a most lively one. This motivated our proposal for a C. I. M. E. session, with the aim to make it available to a public wider than specialists an overview of the subject, with special emphasis on modern advances and techniques. Our project was kindly supported by the C. I. M. E. Committee and met with the interest of a largenumberofapplicants;forty-twoparticipantsfromseveralcountries,both graduatestudentsandseniormathematicians,intensivelyfollowedcoursesand seminars in a friendly and co-operative atmosphere. The main part of the session was arranged in four six-hours courses by Professors D. Masser (Basel), H. P. Schlickewei (Marburg), W. M. Schmidt (Boulder) and M. Waldschmidt (Paris VI). This volume contains expanded notes by the authors of the four courses, together with a paper by Professor Yu. V. 372 pp. Englisch. Codice articolo 9783540403920
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Diophantine Approximation is a branch of Number Theory having its origins intheproblemofproducing'best'rationalapproximationstogivenrealn- bers. Since the early work of Lagrange on Pell's equation and the pioneering work of Thue on the rational approximations to algebraic numbers of degree 3, it has been clear how, in addition to its own speci c importance and - terest, the theory can have fundamental applications to classical diophantine problems in Number Theory. During the whole 20th century, until very recent times, this fruitful interplay went much further, also involving Transcend- tal Number Theory and leading to the solution of several central conjectures on diophantine equations and class number, and to other important achie- ments. These developments naturally raised further intensive research, so at the moment the subject is a most lively one. This motivated our proposal for a C. I. M. E. session, with the aim to make it available to a public wider than specialists an overview of the subject, with special emphasis on modern advances and techniques. Our project was kindly supported by the C. I. M. E. Committee and met with the interest of a largenumberofapplicants;forty-twoparticipantsfromseveralcountries,both graduatestudentsandseniormathematicians,intensivelyfollowedcoursesand seminars in a friendly and co-operative atmosphere. The main part of the session was arranged in four six-hours courses by Professors D. Masser (Basel), H. P. Schlickewei (Marburg), W. M. Schmidt (Boulder) and M. Waldschmidt (Paris VI). This volume contains expanded notes by the authors of the four courses, together with a paper by Professor Yu. V. Codice articolo 9783540403920
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Diophantine Approximation is a branch of Number Theory having its origins intheproblemofproducing¿best¿rationalapproximationstogivenrealn- bers. Since the early work of Lagrange on Pell¿s equation and the pioneering work of Thue on the rational approximations to algebraic numbers of degree 3, it has been clear how, in addition to its own speci c importance and - terest, the theory can have fundamental applications to classical diophantine problems in Number Theory. During the whole 20th century, until very recent times, this fruitful interplay went much further, also involving Transcend- tal Number Theory and leading to the solution of several central conjectures on diophantine equations and class number, and to other important achie- ments. These developments naturally raised further intensive research, so at the moment the subject is a most lively one. This motivated our proposal for a C. I. M. E. session, with the aim to make it available to a public wider than specialists an overview of the subject, with special emphasis on modern advances and techniques. Our project was kindly supported by the C. I. M. E. Committee and met with the interest of a largenumberofapplicants;forty-twoparticipantsfromseveralcountries,both graduatestudentsandseniormathematicians,intensivelyfollowedcoursesand seminars in a friendly and co-operative atmosphere. The main part of the session was arranged in four six-hours courses by Professors D. Masser (Basel), H. P. Schlickewei (Marburg), W. M. Schmidt (Boulder) and M. Waldschmidt (Paris VI). This volume contains expanded notes by the authors of the four courses, together with a paper by Professor Yu. V.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 372 pp. Englisch. Codice articolo 9783540403920
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 5907047-n
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 5907047-n
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783540403920
Quantità: 10 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 5907047
Quantità: Più di 20 disponibili