Generalized method of moments (GMM) estimation of nonlinear systems has two important advantages over conventional maximum likelihood (ML) estimation: GMM estimation usually requires less restrictive distributional assumptions and remains computationally attractive when ML estimation becomes burdensome or even impossible. This book presents an in-depth treatment of the conditional moment approach to GMM estimation of models frequently encountered in applied microeconometrics. It covers both large sample and small sample properties of conditional moment estimators and provides an application to empirical industrial organization. With its comprehensive and up-to-date coverage of the subject which includes topics like bootstrapping and empirical likelihood techniques, the book addresses scientists, graduate students and professionals in applied econometrics.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Introduction.- I: Estimation Theory.- 2 The Conditional Moment Approach to GMM Estimation.- 2.1 Estimation Principle.- 2.2 Examples.- 2.3 Two-Step Estimators.- 3 Asymptotic Properties of GMM Estimators.- 3.1 Consistency.- 3.2 Asymptotic Distribution.- 4 Computation of GMM Estimators.- 4.1 The Newton-Raphson Method.- 4.2 A Stopping Rule for Initial Estimators.- 5 Asymptotic Efficiency Bounds.- 5.1 Semiparametric Efficiency.- 5.2 Optimal Weights.- 5.3 Optimal Instruments.- 6 Overidentifying Restrictions.- 6.1 Asymptotic Efficiency Gains.- 6.2 Higher Order Moment Conditions.- 6.3 Moments of Compounded Distributions.- 6.4 Complementary Data Sources.- 7 GMM Estimation with Optimal Weights.- 7.1 Iterative Estimators.- 7.2 Small Sample Shortcomings.- 7.3 Lessons from IV Estimation.- 7.4 Application to GMM Estimation.- 7.5 Bootstrapping for GMM Estimators.- 7.6 Empirical Likelihood Approaches.- 8 GMM Estimation with Optimal Instruments.- 8.1 Parametric Two-step Estimation.- 8.2 Series Approximation.- 8.3 K-Nearest Neighbor Estimation.- 8.4 Kernel Estimation.- 8.5 Cross-Validation.- 9 Monte Carlo Investigation.- 9.1 GMM versus Maximum Likelihood Estimation.- 9.2 GMM versus Empirical Likelihood Estimation.- II: Application.- 10 Theory of Cooperative R&D.- 10.1 Motivation.- 10.2 Intra- and Inter-Industry R&D Cooperation.- 10.3 Extension to Vertically Related Industries.- 10.4 Horizontal and Vertical R&D Cooperation.- 10.5 Empirical Implications of the Model.- 11 Empirical Evidence on Cooperative R&D.- 11.1 Data.- 11.2 Specification.- 11.3 Estimation Results.- 12 Conclusion.- References.
Book by Inkmann Joachim
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 228. Codice articolo 263062929
Quantità: 1 disponibili
Da: WeBuyBooks, Rossendale, LANCS, Regno Unito
Condizione: Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind. Codice articolo wbs6279007074
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 228 Illus. Codice articolo 5833550
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 228. Codice articolo 183062939
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020166534
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540412076_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9783540412076
Quantità: 10 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 214 pages. 9.25x6.25x0.75 inches. In Stock. Codice articolo x-3540412077
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Includes supplementary material: sn.pub/extrasGeneralized method of moments (GMM) estimation of nonlinear systems has two important advantages over conventional maximum likelihood (ML) estimation: GMM estimation usually requires less restrictive . Codice articolo 4889157
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Generalized method of moments (GMM) estimation of nonlinear systems has two important advantages over conventional maximum likelihood (ML) estimation: GMM estimation usually requires less restrictive distributional assumptions and remains computationally attractive when ML estimation becomes burdensome or even impossible. This book presents an in-depth treatment of the conditional moment approach to GMM estimation of models frequently encountered in applied microeconometrics. It covers both large sample and small sample properties of conditional moment estimators and provides an application to empirical industrial organization. With its comprehensive and up-to-date coverage of the subject which includes topics like bootstrapping and empirical likelihood techniques, the book addresses scientists, graduate students and professionals in applied econometrics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 228 pp. Englisch. Codice articolo 9783540412076
Quantità: 1 disponibili