This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree in June 1999. It was honored with the 1999 ACM Doctoral Dissertation Award in May 2000. Summary Computational complexity is the study of the inherent di culty of compu- tional problems and the power of the tools we may use to solve them. It aims to describe how many resources we need to compute the solution as a function of the problem size. Typical resources include time on sequential and parallel architectures and memory space. As we want to abstract away from details of input representation and speci cs of the computer model, we end up with classes of problems that we can solve within certain robust resource bounds such as polynomial time, parallel logarithmic time, and logarithmic space. Research in complexity theory boils down to determining the relationships between these classes { inclusions and separations. In this dissertation, we focus on the role of randomness and look at various properties of hard problems in order to obtain separations. We also investigate the power of nondeterminism and alternation, as well as space versus time issues. Randomness provides a resource that seems to help in various situations.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1. Introduction.- 2. Preliminaries.- 3. Derandomizing Arthur-Merlin Games.- 4. Sparseness of Complete Languages.- 5. Autoreducibility of Complete Languages.- 6. The Size of Randomized Polynomial Time.- 7. The Frequency of Complete Languages.- 8. The Frequency of Autoreducible Languages.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 21,34 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Richard Booth's Bookshop, Hereford, Regno Unito
PaperBack. Condizione: Good. No jacket. xv, 196pp. ill. 24 cm. Revision of thesis Ph. D.University of Chicago, 1999.Includes bibliographical references p. 183189 and indexes.Good Clean Copy.This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree in June 1999. It was honored with the 1999 ACM Doctoral Dissertation Award in May 2000. Summary Computational complexity is the study of the inherent di culty of compu tional problems and the power of the tools we may use to solve them. It aims to describe how many resources we need to compute the solution as a function of the problem size. Typical resources include time on sequential and parallel architectures and memory space. As we want to abstract away from details of input representation and speci cs of the computer model, we end up with classes of problems that we can solve within certain robust resource bounds such as polynomial time, parallel logarithmic time, and logarithmic space. Research in complexity theory boils down to determining the relationships between these classes inclusions and separations. In this dissertation, we focus on the role of randomness and look at various properties of hard problems in order to obtain separations. We also investigate the power of nondeterminism and alternation, as well as space versus time issues. Randomness provides a resource that seems to help in various situations. Codice articolo 100073243
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree. Codice articolo 4889290
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree in June 1999. It was honored with the 1999 ACM Doctoral Dissertation Award in May 2000. Summary Computational complexity is the study of the inherent di culty of compu- tional problems and the power of the tools we may use to solve them. It aims to describe how many resources we need to compute the solution as a function of the problem size. Typical resources include time on sequential and parallel architectures and memory space. As we want to abstract away from details of input representation and speci cs of the computer model, we end up with classes of problems that we can solve within certain robust resource bounds such as polynomial time, parallel logarithmic time, and logarithmic space. Research in complexity theory boils down to determining the relationships between these classes { inclusions and separations. In this dissertation, we focus on the role of randomness and look at various properties of hard problems in order to obtain separations. We also investigate the power of nondeterminism and alternation, as well as space versus time issues. Randomness provides a resource that seems to help in various situations. 220 pp. Englisch. Codice articolo 9783540414926
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree in June 1999. It was honored with the 1999 ACM Doctoral Dissertation Award in May 2000. Summary Computational complexity is the study of the inherent di culty of compu- tional problems and the power of the tools we may use to solve them. It aims to describe how many resources we need to compute the solution as a function of the problem size. Typical resources include time on sequential and parallel architectures and memory space. As we want to abstract away from details of input representation and speci cs of the computer model, we end up with classes of problems that we can solve within certain robust resource bounds such as polynomial time, parallel logarithmic time, and logarithmic space. Research in complexity theory boils down to determining the relationships between these classes { inclusions and separations. In this dissertation, we focus on the role of randomness and look at various properties of hard problems in order to obtain separations. We also investigate the power of nondeterminism and alternation, as well as space versus time issues. Randomness provides a resource that seems to help in various situations. Codice articolo 9783540414926
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -This book contains a revised version of the dissertation the author wrote at the Department of Computer Science of the University of Chicago. The thesis was submitted to the Faculty of Physical Sciences in conformity with the requirements for the PhD degree in June 1999. It was honored with the 1999 ACM Doctoral Dissertation Award in May 2000. Summary Computational complexity is the study of the inherent di culty of compu- tional problems and the power of the tools we may use to solve them. It aims to describe how many resources we need to compute the solution as a function of the problem size. Typical resources include time on sequential and parallel architectures and memory space. As we want to abstract away from details of input representation and speci cs of the computer model, we end up with classes of problems that we can solve within certain robust resource bounds such as polynomial time, parallel logarithmic time, and logarithmic space. Research in complexity theory boils down to determining the relationships between these classes { inclusions and separations. In this dissertation, we focus on the role of randomness and look at various properties of hard problems in order to obtain separations. We also investigate the power of nondeterminism and alternation, as well as space versus time issues. Randomness provides a resource that seems to help in various situations.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 220 pp. Englisch. Codice articolo 9783540414926
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 1705095-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540414926_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 1705095-n
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 220. Codice articolo 263096025
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 220 Illus. Codice articolo 5800454
Quantità: 4 disponibili