Accurate Numerical Algorithms: A Collection of Research Papers (Research Reports Esprit / Project 1072. D.I.A.M.O.N.D.): 1 - Brossura

 
9783540514770: Accurate Numerical Algorithms: A Collection of Research Papers (Research Reports Esprit / Project 1072. D.I.A.M.O.N.D.): 1

Sinossi

The major goals of the Esprit Project 1072, D.I.A.M.O.N.D. (Development and Integration of Accurate Mathematical Operations in Numerical Data-Processing), were to develop a set of accurate numerical algorithms (work package 3) and to provide tools to support the

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

Highly Accurate Numerical Algorithms.- 0. Introduction.- 1. Design of E-Methods.- 2. Application of Brouwer’s Fixed-Point Theorem.- 3. Eigenvalues.- 4. The Application of Theorems on Zeros in the Complex Plane.- 5. Linear Systems for Sparse Matrices.- 6. Quadrature.- 7. Nonlinear Systems.- References.- Appendix. The PASCAL-SC Demonstration Package.- Solving the Complex Algebraic Eigenvalue Problem with Verified High Accuracy.- 1. Introduction.- 2. Mathematical Foundations.- 3. Inclusion of the Complex Algebraic Eigenvalue Problem.- 4. The Inclusion Algorithm.- References.- Techniques for Generating Accurate Eigensolutions in ADA.- 1. Introduction.- 2. Method.- 3. Implementation.- 4. Appendix.- 5. Glossary.- References.- Enclosing all Eigenvalues of Symmetric Matrices.- 1. Introduction.- 2. Simple Method for Computing Enclosures of Eigenvalues.- 3. Computing Eigenvector Approximations with High Accuracy.- 4. Computing Eigenvalue Enclosures with High Accuracy.- 5. Computing Eigenvector Enclosures.- 6. Numerical Examples.- References.- Computing Accurate Eigenvalues of a Hermitian Matrix.- 1. Introduction.- 2. A Jacobi Method for the Hermitian Eigenvalue Problem.- 3. Inclusion of the Estimated Eigenvalues.- 4. Improvement of the Eigensolution by Newton Iterations.- 5. Adapting the Algorithm to Ada.- 6. Ada Package Specification.- 7. Test Results.- 8. Conclusions.- References.- Verified Inclusion of all Roots of a Complex Polynomial by means of Circular Arithmetic.- 1. Introduction.- 2. Refinement of the Schur/Cohn Algorithm.- 3. Refined Bisecting Process.- 4. Solving Algorithm.- 5. Performance, Example.- 6. Conclusions.- Literature.- Verified Results for Linear Systems with Sparse Matrices.- 1. Introduction.- 2. Method Description.- 3. Method Implementation.- 4. Remarks.- References.- Self-Validating Numerical Quadrature.- 1. Review.- 2. Fundamentals.- 3. Verified Computation of the Procedure Error via Automatic Differentiation.- 4. Numerical Quadrature via Modified Romberg-Extrapolation.- 5. Faster Reduction of the Total Error via Adaptive Refinement.- 6. Numerical Results.- References.- Solving Nonlinear Equations with Verification of Results.- 1. Introduction.- 2. Inclusion of Zeros.- 3. Numerical Problems with Traditional Methods.- 4. Improvement of Theoretical Behaviour of Traditional Methods.- 5. Condition of a System of Nonlinear Equations.- 6. Implementation Aspects.- References.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9780387514772: Accurate Numerical Algorithms: A Collection of Research Papers

Edizione in evidenza

ISBN 10:  0387514775 ISBN 13:  9780387514772
Casa editrice: Springer Verlag, 1989
Brossura