This text presents the modern unified theory of spectral methods and their implementation in the numerical analysis of partial differential equations occurring in fluid dynamical problems of transition, turbulence and aerodynamics. It provides the engineer with the tools and guidance necessary to apply the methods successfully, and it furnishes the mathematician with a theoretical background to the subject. All of the essential components of spectral algorithms currently employed for large-scale computations in fluid mechanics are described in detail. Some specific applications are linear stability, boundary layer calculations, direct simulations of transition and turbulence, and compressible Euler equations. The authors also present complete algorithms for Poisson's equation, linear hyperbolic systems, the advection diffusion equation, isotropic turbulence, and boundary layer transition. Some recent developments stressed in the book are iterative techniques (including the spectral multigrid method), spectral shock-fitting algorithms, and spectral multidomain methods. The book addresses graduate students and researchers in fluid dynamics and applied mathematics as well as engineers working on problems of practical importance. For this edition the authors have added a new section on the spectral domain decomposition method, and a supplementary bibliography on recent developments.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1. Introduction.- 1.1. Historical Background.- 1.2. Some Examples of Spectral Methods.- 1.2.1. A Fourier Galerkin Method for the Wave Equation.- 1.2.2. A Chebyshev Collocation Method for the Heat Equation.- 1.2.3. A Legendre Tau Method for the Poisson Equation.- 1.2.4. Basic Aspects of Galerkin, Tau and Collocation Methods.- 1.3. The Equations of Fluid Dynamics.- 1.3.1. Compressible Navier-Stokes.- 1.3.2. Compressible Euler.- 1.3.3. Compressible Potential.- 1.3.4. Incompressible Flow.- 1.3.5. Boundary Layer.- 1.4. Spectral Accuracy for a Two-Dimensional Fluid Calculation.- 1.5. Three-Dimensional Applications in Fluids.- 2. Spectral Approximation.- 2.1. The Fourier System.- 2.1.1. The Continuous Fourier Expansion.- 2.1.2. The Discrete Fourier Expansion.- 2.1.3. Differentiation.- 2.1.4. The Gibbs Phenomenon.- 2.2. Orthogonal Polynomials in ( — 1, 1).- 2.2.1. Sturm—Liouville Problems.- 2.2.2. Orthogonal Systems of Polynomials.- 2.2.3. Gauss-Type Quadratures and Discrete Polynomial Transforms.- 2.3. Legendre Polynomials.- 2.3.1. Basic Formulas.- 2.3.2. Differentiation.- 2.4. Chebyshev Polynomials.- 2.4.1. Basic Formulas.- 2.4.2. Differentiation.- 2.5. Generalizations.- 2.5.1. Jacobi Polynomials.- 2.5.2. Mapping.- 2.5.3. Semi-Infinite Intervals.- 2.5.4. Infinite Intervals.- 3. Fundamentals of Spectral Methods for PDEs.- 3.1. Spectral Projection of the Burgers Equation.- 3.1.1. Fourier Galerkin.- 3.1.2. Fourier Collocation.- 3.1.3. Chebyshev Tau.- 3.1.4. Chebyshev Collocation.- 3.2. Convolution Sums.- 3.2.1. Pseudospectral Transform Methods.- 3 2 2 Aliasing Removal by Padding or Truncation.- 3.2.3. Aliasing Removal by Phase Shifts.- 3.2.4. Convolution Sums in Chebyshev Methods.- 3.2.5. Relation Between Collocation and Pseudospectral Methods.- 3.3. Boundary Conditions.- 3.4. Coordinate Singularities.- 3.4.1. Polar Coordinates.- 3.4.2. Spherical Polar Coordinates.- 3.5. Two-Dimensional Mapping.- 4. Temporal Discretization.- 4.1. Introduction.- 4.2. The Eigenvalues of Basic Spectral Operators.- 4.2.1. The First-Derivative Operator.- 4.2.2. The Second-Derivative Operator.- 4.3. Some Standard Schemes.- 4.3.1. Multistep Schemes.- 4.3.2. Runge—Kutta Methods.- 4.4. Special Purpose Schemes.- 4.4.1. High Resolution Temporal Schemes.- 4.4.2. Special Integration Techniques.- 4.4.3. Lerat Schemes.- 4.5. Conservation Forms.- 4.6. Aliasing.- 5. Solution Techniques for Implicit Spectral Equations.- 5.1. Direct Methods.- 5.1.1. Fourier Approximations.- 5.1.2. Chebyshev Tau Approximations.- 5.1.3. Schur-Decomposition and Matrix-Diagonalization.- 5.2. Fundamentals of Iterative Methods.- 5.2.1. Richardson Iteration.- 5.2.2. Preconditioning.- 5.2.3. Non-Periodic Problems.- 5.2.4. Finite-Element Preconditioning.- 5.3. Conventional Iterative Methods.- 5.3.1. Descent Methods for Symmetric, Positive-Definite Systems.- 5.3.2. Descent Methods for Non-Symmetric Problems.- 5.3.3. Chebyshev Acceleration.- 5.4. Multidimensional Preconditioning.- 5.4.1. Finite-Difference Solvers.- 5.4.2. Modified Finite-Difference Preconditioners.- 5.5. Spectral Multigrid Methods.- 5.5.1. Model Problem Discussion.- 5.5.2. Two-Dimensional Problems.- 5.5.3. Interpolation Operators.- 5.5.4. Coarse-Grid Operators.- 5.5.5. Relaxation Schemes.- 5.6. A Semi-Implicit Method for the Navier—Stokes Equations.- 6. Simple Incompressible Flows.- 6.1. Burgers Equation.- 6.2. Shear Flow Past a Circle.- 6.3. Boundary-Layer Flows.- 6.4. Linear Stability.- 7. Some Algorithms for Unsteady Navier—Stokes Equations.- 7.1. Introduction.- 7.2. Homogeneous Flows.- 7.2.1. A Spectral Galerkin Solution Technique.- 7.2.2. Treatment of the Nonlinear Terms.- 7.2.3. Refinements.- 7.2.4. Pseudospectral and Collocation Methods.- 7.3. Inhomogeneous Flows.- 7.3.1. Coupled Methods.- 7.3.2. Splitting Methods.- 7.3.3. Galerkin Methods.- 7.3.4. Other Confined Flows.- 7.3.5. Unbounded Flows.- 7.3.6. Aliasing in Transition Calculations.- 7.4. Flows with Multiple Inhomogeneous Directions.- 7.4.1. Choice of Mesh.- 7.4.2. Coupled Methods.- 7.4.3. Splitting Methods.- 7.4.4. Other Methods.- 7.5. Mixed Spectral/Finite-Difference Methods.- 8. Compressible Flow.- 8.1. Introduction.- 8.2. Boundary Conditions for Hyperbolic Problems.- 8.3. Basic Results for Scalar Nonsmooth Problems.- 8.4. Homogeneous Turbulence.- 8.5. Shock-Capturing.- 8.5.1. Potential Flow.- 8.5.2. Ringleb Flow.- 8.5.3. Astrophysical Nozzle.- 8.6. Shock-Fitting.- 8.7. Reacting Flows.- 9. Global Approximation Results.- 9.1. Fourier Approximation.- 9.1.1. Inverse Inequalities for Trigonometric Polynomials.- 9.1.2. Estimates for the Truncation and Best Approximation Errors.- 9.1.3. Estimates for the Interpolation Error.- 9.2. Sturm—Liouville Expansions.- 9.2.1. Regular Sturm—Liouville Problems.- 9.2.2. Singular Sturm—Liouville Problems.- 9.3. Discrete Norms.- 9.4. Legendre Approximations.- 9.4.1. Inverse Inequalities for Algebraic Polynomials.- 9.4.2. Estimates for the Truncation and Best Approximation Errors.- 9.4.3. Estimates for the Interpolation Error.- 9.5. Chebyshev Approximations.- 9.5.1. Inverse Inequalities for Polynomials.- 9.5.2. Estimates for the Truncation and Best Approximation Errors.- 9.5.3. Estimates for the Interpolation Error.- 9.5.4. Proofs of Some Approximation Results.- 9.6. Other Polynomial Approximations.- 9.6.1. Jacobi Polynomials.- 9.6.2. Laguerre and Hermite Polynomials.- 9.7. Approximation Results in Several Dimensions.- 9.7.1. Fourier Approximations.- 9.7.2. Legendre Approximations.- 9.7.3. Chebyshev Approximations.- 9.7.4. Blended Fourier and Chebyshev Approximations.- 10. Theory of Stability and Convergence for Spectral Methods.- 10.1. The Three Examples Revisited.- 10.1.1. A Fourier Galerkin Method for the Wave Equation.- 10.1.2. A Chebyshev Collocation Method for the Heat Equation.- 10.1.3. A Legendre Tau Method for the Poisson Equation.- 10.2. Towards a General Theory.- 10.3. General Formulation of Spectral Approximations to Linear Steady Problems.- 10.4. Galerkin, Collocation and Tau Methods.- 10.4.1. Galerkin Methods.- 10.4.2. Tau Methods.- 10.4.3. Collocation Methods.- 10.5. General Formulation of Spectral Approximations to Linear Evolution Equations.- 10.5.1. Conditions for Stability and Convergence: The Parabolic Case.- 10.5.2. Conditions for Stability and Convergence: The Hyperbolic Case.- 10.6. The Error Equation.- 11. Steady, Smooth Problems.- 11.1. The Poisson Equation.- 11.1.1. Legendre Methods.- 11.1.2. Chebyshev Methods.- 11.1.3. Other Boundary Value Problems.- 11.2. Advection-Diffusion Equation.- 11.2.1. Linear Advection-Diffusion Equation.- 11.2.2. Steady Burgers Equation.- 11.3. Navier—Stokes Equations.- 11.3.1. Compatibility Conditions Between Velocity and Pressure.- 11.3.2. Direct Discretization of the Continuity Equation: The “inf-sup” Condition.- 11.3.3. Discretizations of the Continuity Equation by an Influence-Matrix Technique: The Kleiser—Schumann Method.- 11.3.4. Navier—Stokes Equations in Streamfunction Formulation.- 11.4. The Eigenvalues of Some Spectral Operators.- 11.4.1. The Discrete Eigenvalues for Lu = ? uxx.- 11.4.2. The Discrete Eigenvalues for Lu = ? vuxx + bux.- 11.4.3. The Discrete Eigenvalues for Lu = ux.- 12. Transient, Smooth Problems.- 12.1. Linear Hyperbolic Equations.- 12.1.1. Periodic Boundary Conditions.- 12.1.2. Non-Periodic Boundary Conditions.- 12.1.3. Hyperbolic Systems.- 12.1.4. Spectral Accuracy for Non-Smooth Solutions.- 12.2. Heat Equation.- 12.2.1. Semi-Discrete Approximation.- 12.2.2. Fully Discrete Approximation.- 12.3. Advection-Diffusion Equation.- 12.3.1. Semi-Discrete Approximation.- 12.3.2. Fully Discrete Approximation.- 13. Domain Decomposition Methods.- 13.1. Introduction.- 13.2. Patching Methods.- 13.2.1. Notation.- 13.2.2. Discretization.- 13.2.3. Solution Techniques.- 13.2.4. Examples.- 13.3. Variational Methods.- 13.3.1. Formulation.- 13.3.2. The Spectral-Element Method.- 13.4. The Alternating Schwarz Method.- 13.5. Mathematical Aspects of Domain Decomposition Methods.- 13.5.1. Patching Methods.- 13.5.2. Equivalence Between Patching and Variational Methods.- 13.6. Some Stability and Convergence Results.- 13.6.1. Patching Methods.- 13.6.2. Variational Methods.- Appendices.- A. Basic Mathematical Concepts.- B. Fast Fourier Transforms.- C. Jacobi—Gauss—Lobatto Roots.- References.
HARD TO FIND
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 3,20 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 2,25 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: HPB-Red, Dallas, TX, U.S.A.
paperback. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_443794137
Quantità: 1 disponibili
Da: Reader's Corner, Inc., Raleigh, NC, U.S.A.
Soft cover. Condizione: Near Fine. 1st Edition. This is a near fine, unmarked third printing paperback copy, pale gray spine. Codice articolo 098521
Quantità: 1 disponibili
Da: BookHolders, Towson, MD, U.S.A.
Condizione: Good. [ No Hassle 30 Day Returns ][ Ships Daily ] [ Underlining/Highlighting: NONE ] [ Writing: NONE ] [ Edition: First ] Publisher: Springer Berlin Heidelberg Pub Date: 7/1/1993 Binding: Paperback Pages: 584 First edition. Codice articolo 6756498
Quantità: 1 disponibili
Da: McCord Books, NORWALK, IA, U.S.A.
paperback. Condizione: Good. Spine has some fading, otherwise very good condition, name/price inside cover, text is unmarked. Codice articolo 230527001
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 18670447-n
Quantità: 15 disponibili
Da: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condizione: new. Paperback. This text presents the modern unified theory of spectral methods and their implementation in the numerical analysis of partial differential equations occurring in fluid dynamical problems of transition, turbulence and aerodynamics. It provides the engineer with the tools and guidance necessary to apply the methods successfully, and it furnishes the mathematician with a theoretical background to the subject. All of the essential components of spectral algorithms currently employed for large-scale computations in fluid mechanics are described in detail. Some specific applications are linear stability, boundary layer calculations, direct simulations of transition and turbulence, and compressible Euler equations. The authors also present complete algorithms for Poisson's equation, linear hyperbolic systems, the advection diffusion equation, isotropic turbulence, and boundary layer transition. Some recent developments stressed in the book are iterative techniques (including the spectral multigrid method), spectral shock-fitting algorithms, and spectral multidomain methods.The book addresses graduate students and researchers in fluid dynamics and applied mathematics as well as engineers working on problems of practical importance. For this edition the authors have added a new section on the spectral domain decomposition method, and a supplementary bibliography on recent developments. This textbook presents the modern unified theory of spectral methods and their implementation in the numerical analysis of partial differential equations occurring in fluid dynamical problems of transition, turbulence, and aerodynamics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783540522058
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020169154
Quantità: Più di 20 disponibili
Da: BennettBooksLtd, San Diego, NV, U.S.A.
paperback. Condizione: New. In shrink wrap. Looks like an interesting title! Codice articolo Q-3540522050
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783540522058
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540522058_new
Quantità: Più di 20 disponibili