In the last 25 years, the fuzzy set theory has been appliedin many disciplines such as operations research, managementscience, control theory,artificial intelligence/expertsystem, etc. In this volume, methods and applications offuzzy mathematical programming and possibilisticmathematical programmingare first systematically and thoroughly reviewed andclassified. This state-of-the-art survey provides readerswith a capsule look into the existing methods, and theircharacteristics and applicability to analysis of fuzzy andpossibilistic programming problems. To realize practicalfuzzy modelling, we present solutions for real-worldproblems including production/manufacturing, transportation,assignment, game, environmental management, resourceallocation,project investment, banking/finance, and agriculturaleconomics. To improve flexibility and robustness of fuzzymathematical programming techniques, we also present ourexpert decision-making support system IFLP which considersand solves all possibilities of a specific domain of (fuzzy)linear programming problems. Basic fuzzy set theories,membership functions, fuzzy decisions, operators and fuzzyarithmetic are introduced with simple numerical examples inaneasy-to-read and easy-to-follow manner. An updatedbibliographical listing of 60 books, monographs orconference proceedings, and about 300 selected papers,reports or theses is presented in the end of this study.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Introduction.- 1.1 Objectives of This Study.- 1.2 Fuzzy Mathematical Programming Problems.- 1.3 Classification of Fuzzy Mathematical Programming.- 1.4 Applications of Fuzzy Mathematical Programming.- 1.5 Literature Survey.- 2 Fuzzy Set Theory.- 2.1 Fuzzy Sets.- 2.2 Fuzzy Set Theory.- 2.2.1 Basic Terminology and Definition.- 2.2.1.1 Definition of Fuzzy Sets.- 2.2.1.2 Support.- 2.2.1.3 ?-level Set.- 2.2.1.4 Normality.- 2.2.1.5 Convexity and Concavity.- 2.2.1.6 Extension Principle.- 2.2.1.7 Compatibility of Extension Principle with ?-cuts.- 2.2.1.8 Relation.- 2.2.1.9 Decomposability.- 2.2.1.10 Decomposition Theorem.- 2.2.1.11 Probability of Fuzzy Events.- 2.2.1.12 Conditional Fuzzy Sets.- 2.2.2 Basic Operations.- 2.2.2.1 Inclusion.- 2.2.2.2 Equality.- 2.2.2.3 Complementation.- 2.2.2.4 Intersection.- 2.2.2.5 Union.- 2.2.2.6 Algebraic Product.- 2.2.2.7 Algebraic Sum.- 2.2.2.8 Difference.- 2.3 Membership Functions.- 2.3.1 A Survey of Functional Forms.- 2.3.2 Examples to Generate Membership Functions.- 2.3.2.1 Distance Approach.- 2.3.2.2 True-Valued Approach.- 2.3.2.3 Payoff Function.- 2.3.2.4 Other Examples.- 2.4 Fuzzy Decision and Operators.- 2.4.1 Fuzzy Decision.- 2.4.2 Max-Min Operator.- 2.4.3 Compensatory Operators.- 2.4.3.1 Numerical Example for Operators.- 2.5 Fuzzy Arithmetic.- 2.5.1 Addition of Fuzzy Numbers.- 2.5.2 Subtraction of Fuzzy Numbers.- 2.5.3 Multiplication of Fuzzy Numbers.- 2.5.4 Division of Fuzzy Numbers.- 2.5.5 Triangular and Trapezoid Fuzzy Numbers.- 2.6 Fuzzy Ranking.- 3 Fuzzy Mathematical Programming.- 3.1 Fuzzy Linear Programming Models.- 3.1.1 Linear Programming Problem with Fuzzy Resources.- 3.1.1.1 Verdegay’s Approach.- 3.1.1.1a Example 1: The Knox Production-Mix Selection Problem.- 3.1.1.1b Example 2: A Transportation Problem.- 3.1.1.2 Werners’s Approach.- 3.1.1.2a Example 1: The Knox Production-Mix Selection Problem.- 3.1.1.2b Example 2: An Air Pollution Regulation Problem.- 3.1.2 Linear Programming Problem with Fuzzy Resources and Objective.- 3.1.2.1 Zimmermann’s Approach.- 3.1.2.1a Example 1: The Knox Production-Mix Selection Problem.- 3.1.2.1b Example 2: A Regional Resource Allocation Problem.- 3.1.2.1c Example 3: A Fuzzy Resource Allocation Problem.- 3.1.2.2 Chanas’s Approach.- 3.1.2.2a Example 1: An Optimal System Design Problem.- 3.1.2.2b Example 2: An Aggregate Production Planning Problem.- 3.1.3 Linear Programming Problem with Fuzzy Parameters in the Objective Function.- 3.1.4 Linear Programming with All Fuzzy Coefficients.- 3.1.4.1 Example: A Production Scheduling Problem.- 3.2 Interactive Fuzzy Linear Programming.- 3.2.1 Introduction.- 3.2.2 Discussion of Zimmermann’s, Werners’s Chanas’s and Verdegay’s Approaches.- 3.2.3 Interactive Fuzzy Linear Programming ― I.- 3.2.3.1 Problem Setting.- 3.2.3.2 The Algorithm of IFLP-I.- 3.2.3.3 Example: The Knox Production-Mix Selection Problem.- 3.2.4 Interactive Fuzzy Linear Programming ― II.- 3.2.4.1 The Algorithm of IFLP-II.- 3.3 Some Extensions of Fuzzy Linear Programming Problems.- 3.3.1 Membership Functions.- 3.3.1.1 Example: A Truck Fleet Problem.- 3.3.2 Operators.- 3.3.3 Sensitivity Analysis and Dual Theory.- 3.3.4 Fuzzy Non-Linear Programming.- 3.3.4.1 Example: A Fuzzy Machining Economics Problem.- 3.3.5 Fuzzy Integer Programming.- 3.3.5.1 Fuzzy 0–1 Linear Programming.- 3.3.5.1a Example: A Fuzzy Location Problem.- 4 Possibilistic Programming.- 4.1 Possibilistic Linear Programming Models.- 4.1.1 Linear Programming with Imprecise Resources and Technological Coefficients.- 4.1.1.1 Ramik and Rimanek’s Approach.- 4.1.1.1a Example: A Profit Apportionment Problem.- 4.1.1.2 Tanaka, Ichihashi and Asai’s Approach.- 4.1.1.3 Dubois’s Approach.- 4.1.2 Linear Programming with Imprecise Objective Coefficients.- 4.1.2.1 Lai and Hwang’s Approach.- 4.1.2.1a Example: A Winston-Salem Development Management Problem.- 4.1.2.2 Rommelfanger, Hanuscheck and Wolf’s Approach.- 4.1.2.3 Delgado, Verdegay and Vila’s Approach.- 4.1.3 Linear Programming with Imprecise Objective and Technological Coefficients.- 4.1.4 Linear Programming with Imprecise Coefficients.- 4.1.4.1 Lai and Hwang’s Approach.- 4.1.4.2 Buckley’s Approach.- 4.1.4.2a Example: A Feed Mix (Diet) Problem.- 4.1.4.3 Negi’s Approach.- 4.1.4.4 Fuller’s Approach.- 4.1.5 Other Problems.- 4.2 Some Extensions of Possibilistic Linear Programming.- 4.2.1 Linear Programming with Imprecise Coefficients and Fuzzy Inequalities.- 4.2.1a Example: A Fuzzy Matrix Game Problem.- 4.2.2 Linear Programming with Imprecise Objective Coefficients and Fuzzy Resources.- 4.2.2a Example: A Bank Hedging Decision Problem.- 4.2.3 Stochastic Possibilistic Linear Programming.- 4.2.3a Example: A Bank Hedging Decision Problem.- 5 Concluding Remarks.- 5.1 Probability Theory versus Fuzzy Set Theory.- 5.2 Stochastic versus Possibilistic Programming.- 5.3 Future Research.- 5.4 Introduction of the Following Volume.- 5.5 Fuzzy Multiple Attribute Decision Making.- Books, Monographs and Conference Proceedings.- Journal Articles, Technical Reports and Theses.
Book by Lai YoungJou Hwang ChingLai
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 6,90 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Seiten: 324 | Sprache: Englisch | Produktart: Sonstiges. Codice articolo 22641643/202
Quantità: 3 disponibili
Da: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.
Condizione: Very Good. *Price HAS BEEN REDUCED by 10% until Monday, June 9 (weekend SALE item)* 301 pp., errata sheet laid-in, paperback, minor underlining to ONE page else very good. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Codice articolo ZB1212209
Quantità: 1 disponibili
Da: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Germania
Gebundene Ausgabe. Condizione: Gut. 301 S. Das hier angebotene Buch stammt aus einer teilaufgelösten wissenschaftlichen Bibliothek und trägt die entsprechenden Kennzeichnungen (Rückenschild, Instituts-Stempel.). Buchschnitt und Seitenränder alters-/papierbedingt angebräunt; Der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. Sprache: Englisch Gewicht in Gramm: 600. Codice articolo 956950
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In the last 25 years, the fuzzy set theory has been appliedin many disciplines such as operations research, managementscience, control theory,artificial intelligence/expertsystem, etc. In this volume, methods and applications offuzzy mathematica. Codice articolo 4893835
Quantità: Più di 20 disponibili
Da: Roland Antiquariat UG haftungsbeschränkt, Weinheim, Germania
Softcover: 17 x 1.9 x 24.4 cm. 1. 324 p. Unread book. Very good condition. Minimum traces of storage. 9783540560982 Sprache: Englisch Gewicht in Gramm: 653. Codice articolo 202854
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In the last 25 years, the fuzzy set theory has been appliedin many disciplines such as operations research, managementscience, control theory,artificial intelligence/expertsystem, etc. In this volume, methods and applications offuzzy mathematical programming and possibilisticmathematical programmingare first systematically and thoroughly reviewed andclassified. This state-of-the-art survey provides readerswith a capsule look into the existing methods, and theircharacteristics and applicability to analysis of fuzzy andpossibilistic programming problems. To realize practicalfuzzy modelling, we present solutions for real-worldproblems including production/manufacturing, transportation,assignment, game, environmental management, resourceallocation,project investment, banking/finance, and agriculturaleconomics. To improve flexibility and robustness of fuzzymathematical programming techniques, we also present ourexpert decision-making support system IFLP which considersand solves all possibilities of a specific domain of (fuzzy)linear programming problems. Basic fuzzy set theories,membership functions, fuzzy decisions, operators and fuzzyarithmetic are introduced with simple numerical examples inaneasy-to-read and easy-to-follow manner. An updatedbibliographical listing of 60 books, monographs orconference proceedings, and about 300 selected papers,reports or theses is presented in the end of this study. Codice articolo 9783540560982
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In the last 25 years, the fuzzy set theory has been appliedin many disciplines such as operations research, managementscience, control theory,artificial intelligence/expertsystem, etc. In this volume, methods and applications offuzzy mathematical programming and possibilisticmathematical programmingare first systematically and thoroughly reviewed andclassified. This state-of-the-art survey provides readerswith a capsule look into the existing methods, and theircharacteristics and applicability to analysis of fuzzy andpossibilistic programming problems. To realize practicalfuzzy modelling, we present solutions for real-worldproblems including production/manufacturing, transportationassignment, game, environmental management, resourceallocationproject investment, banking/finance, and agriculturaleconomics. To improve flexibility and robustness of fuzzymathematical programming techniques, we also present ourexpert decision-making support system IFLP which considersand solves all possibilities of a specific domain of (fuzzy)linear programming problems. Basic fuzzy set theoriesmembership functions, fuzzy decisions, operators and fuzzyarithmetic are introduced with simple numerical examples inaneasy-to-read and easy-to-follow manner. An updatedbibliographical listing of 60 books, monographs orconference proceedings, and about 300 selected papersreports or theses is presented in the end of this study.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 324 pp. Englisch. Codice articolo 9783540560982
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540560982_new
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783540560982
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 324. Codice articolo 2648035743
Quantità: 4 disponibili