This book has two objectives. The first is to fill a void in the existing mathematical literature by providing a modern, self-contained and in-depth exposition of the theory of algebraic function fields. The topics include the Riemann-Roch theorem, algebraic extensions of function fields, ramifications theory and differentials. Particular emphasis is placed on function fields over a finite constant field, leading into zeta functions and the Hasse-Weil theorem. Numerous examples illustrate the general theory. Error-correcting codes are in widespread use for the reliable transmission of information. Perhaps the most fascinating of all the ties that link the theory of these codes to mathematics is the construction by V.D. Goppa, of powerful codes using techniques borrowed from algebraic geometry. Algebraic function fields provide the most elementary approach to Goppa's ideas, and the second objective of this book is to provide an introduction to Goppa's algebraic-geometric codes along these lines. The codes, their parameters and links with traditional codes such as classical Goppa, Peed-Solomon and BCH codes are treated at an early stage of the book. Subsequent chapters include a decoding algorithm for these codes as well as a discussion of their subfield subcodes and trace codes. Stichtenoth's book will be very useful to students and researchers in algebraic geometry and coding theory and to computer scientists and engineers interested in information transmission.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1. Foundations of the Theory of Algebraic Function Fiels.- 2. Geometric Goppa Codes.- 3. Extensions of Algebraic Function Fields.- 4. Differentials of Algebraic Function Fields.- 5. Algebraic Function Fields over Finite Constant Fields.- 6. Examples of Algebraic Function Fields.- 7. More about Geometric Goppy Codes.- 8. Subfield Subcodes and Trace Codes.- Appendix A. Field Theory.- Appendix B. Algebraic Curves and Algebraic Function Fields.- Bibliography.- List of Notations.- Index
Algebraic Function Fields And Codes BY Henning Stichtenoth, Springer, Paperback, 1993
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Better World Books, Mishawaka, IN, U.S.A.
Condizione: Good. 1st Edition. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. Codice articolo 8180724-6
Quantità: 1 disponibili
Da: Vintage Books and Fine Art, Oxford, MD, U.S.A.
Paperback. Condizione: Very Good. Trade paperback. Square Tight Binding.Mild rubbing to wraps. Clean interior, save for p/o signature to front end paper and very sporadic pencil marginalia. A nice edition at an attractive price. Codice articolo 10740
Quantità: 1 disponibili
Da: Phatpocket Limited, Waltham Abbey, HERTS, Regno Unito
Condizione: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Codice articolo Z1-S-026-03525
Quantità: 1 disponibili
Da: Fireside Bookshop, Stroud, GLOS, Regno Unito
Paperback. Condizione: Very Good. Type: Book N.B. Small plain label to inside front cover. Codice articolo 054647
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. x + 260 1st Edition. Codice articolo 26302136
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. x + 260. Codice articolo 7545831
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. x + 260. Codice articolo 18302130
Quantità: 1 disponibili
Da: Vulkaneifel Bücher, Birgel, Germania
Paperback. Condizione: Neu. neu, noch in Schutzfolie, Versand spätestens am nächsten Werktag 141139 Sprache: Englisch Gewicht in Gramm: 460. Codice articolo 365906
Quantità: 4 disponibili
Da: Versandantiquariat Abendstunde, Ludwigshafen am Rhein, Germania
Softcover. Condizione: gut. Erste Aufl. Kartonierte Broschur mit Rücken- und Deckeltitel. Der Buchrücken etwas lichtgebleicht, die Schnitte leicht berieben, das Titelblatt mit Schatten eines entfernten Etiketts, einzelne Seiten mit kleinem bzw. leichtem Knick einer Ecke, ansonsten guter Erhaltungszustand. "This book has two objectives. The first is to fill a void in the existing mathematical literature by providing a modern, self-contained and in-depth exposition of the theory of algebraic function fields. Topics include the Riemann-Roch theorem, algebraic extensions of function fields, ramifications theory and differentials. Particular emphasis is placed on function fields over a finite constant field, leading into zeta functions and the Hasse-Weil theorem. Numerous examples illustrate the general theory. Error-correcting codes are in widespread use for the reliable transmission of information. Perhaps the most fascinating of all the ties that link the theory of these codes to mathematics is the construction by V. D. Goppa, of powerful codes using techniques borrowed from algebraic geometry. Algebraic function fields provide the most elementary approach to Goppa's ideas, and the second objective of this book is to provide an introduction to Goppa's algebraic-geometric codes along these lines. The codes, their parameters and links with traditional codes such as classical Goppa, Peed-Solomon and BCH codes are treated at an early stage of the book. Subsequent chapters include a decoding algorithm for these codes as well as a discussion of their subfield subcodes and trace codes. Stichtenoth's book will be very useful to students and researchers in algebraic geometry and coding theory and to computer scientists and engineers interested in information transmission." (Verlagstext) Henning Stichtenoth (* 3. November 1944) ist ein deutscher Mathematiker. Stichtenoth promovierte 1972 bei Peter Roquette an der Ruprecht-Karls-Universität Heidelberg über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. Bis 2007 war er Professor an der Universität Duisburg-Essen. Zurzeit ist er Professor an der Sabanci-Universität in Istanbul. Er befasst sich mit algebraischer Geometrie, algebraischen Funktionenkörpern und deren Anwendung in der Kodierungstheorie und Kryptographie. (Wikipedia) In englischer Sprache. X, 260, (2) pages. Groß 8° (155 x 235mm). Codice articolo BN32889
Quantità: 1 disponibili