The purpose of this volume is to give a detailed account of a series of re sults concerning some ergodic questions of quantum mechanics which have the past six years following the formulation of a generalized been addressed in Kolmogorov-Sinai entropy by A.Connes, H.Narnhofer and W.Thirring. Classical ergodicity and mixing are fully developed topics of mathematical physics dealing with the lowest levels in a hierarchy of increasingly random behaviours with the so-called Bernoulli systems at its apex showing a structure that characterizes them as Kolmogorov (K-) systems. It seems not only reasonable, but also inevitable to use classical ergodic theory as a guide in the study of ergodic behaviours of quantum systems. The question is which kind of random behaviours quantum systems can exhibit and whether there is any way of classifying them. Asymptotic statistical independence and, correspondingly, complete lack of control over the distant future are typical features of classical K-systems. These properties are fully characterized by the dynamical entropy of Kolmogorov and Sinai, so that the introduction of a similar concept for quantum systems has provided the opportunity of raising meaningful questions and of proposing some non-trivial answers to them. Since in the following we shall be mainly concerned with infinite quantum systems, the algebraic approach to quantum theory will provide us with the necessary analytical tools which can be used in the commutative context, too.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Introduction.- 2 Classical Ergodic Theory.- 2.1 Irreversibility.- 2.1.1 Coarse-Graining.- 2.1.2 Correlations.- 2.1.3 Abstract Dynamical Systems.- 2.1.4 Spectral Theory.- 2.2 Entropy.- 2.2.1 Randomness and Entropy.- 2.2.2 The Entropy of Kolmogorov and Sinai.- 2.2.3 Kolmogorov Systems.- 2.3 Topological Properties of Dynamical Systems.- 2.3.1 Topological Dynamics.- 2.3.2 Topological Entropy.- 3 Algebraic Approach to Classical Ergodic Theory.- 3.1 Abelian C* Dynamical Systems.- 3.2 Abelian W* Dynamical Systems.- 3.3 W* Algebras: KS-Entropy and K-Systems.- 3.4 C* Algebras: Classical Topological Entropy.- 4 Infinite Quantum Systems.- 4.1 Useful Tools from Finite Quantum Systems.- 4.1.1 Density Matrices and von Neumann Entropy.- 4.1.2 Relative Entropy and Completely Positive Maps.- 4.2 GNS-Construction.- 4.2.1 Fermions, Bosons and Toy Models.- 4.3 Ergodic Properties in Quantum Systems.- 4.3.1 Galilei-Invariant Two-Body Interactions.- 4.4 Algebraic Quantum Kolmogorov Systems.- 5 Connes-Narnhofer-Thirring Entropy.- 5.1 Basic Ideas and Construction 1.- 5.2 Basic Ideas and Construction 2.- 5.3 CNT-Entropy: Applications.- 5.3.1 Dynamical Entropy of Quasi-Free Automorphisms.- 5.3.2 CNT-Entropy and Thermodynamics.- 5.4 Short History of the Topic and Latest Developments.- 5.5 Entropic Quantum Kolmogorov Systems.- 5.6 Ideas for a Non-commutative Topological Entropy.- 6 Appendix.- References.- Index of Symbols.
Book by Benatti Fabio
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 10,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germania
VI, 225 p. Softcover Softcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Trieste Notes in Physics. Sprache: Englisch. Codice articolo 2895AB
Quantità: 1 disponibili
Da: Antiquariat Bookfarm, Löbnitz, Germania
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02806 3540570179 Sprache: Englisch Gewicht in Gramm: 550. Codice articolo 2488688
Quantità: 1 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Seiten: 232 | Sprache: Englisch | Produktart: Bücher. Codice articolo 22696639/2
Quantità: 1 disponibili
Da: Zubal-Books, Since 1961, Cleveland, OH, U.S.A.
Condizione: Very Good. *Price HAS BEEN REDUCED by 10% until Monday, Sept. 1 (holiday Sale Item)* 225 pp., paperback, edges rubbed, else very good. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Codice articolo ZB1256457
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Codice articolo 4894158
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The purpose of this volume is to give a detailed account of a series of re sults concerning some ergodic questions of quantum mechanics which have the past six years following the formulation of a generalized been addressed in Kolmogorov-Sinai entropy by A.Connes, H.Narnhofer and W.Thirring. Classical ergodicity and mixing are fully developed topics of mathematical physics dealing with the lowest levels in a hierarchy of increasingly random behaviours with the so-called Bernoulli systems at its apex showing a structure that characterizes them as Kolmogorov (K-) systems. It seems not only reasonable, but also inevitable to use classical ergodic theory as a guide in the study of ergodic behaviours of quantum systems. The question is which kind of random behaviours quantum systems can exhibit and whether there is any way of classifying them. Asymptotic statistical independence and, correspondingly, complete lack of control over the distant future are typical features of classical K-systems. These properties are fully characterized by the dynamical entropy of Kolmogorov and Sinai, so that the introduction of a similar concept for quantum systems has provided the opportunity of raising meaningful questions and of proposing some non-trivial answers to them. Since in the following we shall be mainly concerned with infinite quantum systems, the algebraic approach to quantum theory will provide us with the necessary analytical tools which can be used in the commutative context, too. 232 pp. Englisch. Codice articolo 9783540570172
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The purpose of this volume is to give a detailed account of a series of re sults concerning some ergodic questions of quantum mechanics which have the past six years following the formulation of a generalized been addressed in Kolmogorov-Sinai entropy by A.Connes, H.Narnhofer and W.Thirring. Classical ergodicity and mixing are fully developed topics of mathematical physics dealing with the lowest levels in a hierarchy of increasingly random behaviours with the so-called Bernoulli systems at its apex showing a structure that characterizes them as Kolmogorov (K-) systems. It seems not only reasonable, but also inevitable to use classical ergodic theory as a guide in the study of ergodic behaviours of quantum systems. The question is which kind of random behaviours quantum systems can exhibit and whether there is any way of classifying them. Asymptotic statistical independence and, correspondingly, complete lack of control over the distant future are typical features of classical K-systems. These properties are fully characterized by the dynamical entropy of Kolmogorov and Sinai, so that the introduction of a similar concept for quantum systems has provided the opportunity of raising meaningful questions and of proposing some non-trivial answers to them. Since in the following we shall be mainly concerned with infinite quantum systems, the algebraic approach to quantum theory will provide us with the necessary analytical tools which can be used in the commutative context, too. Codice articolo 9783540570172
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -The purpose of this volume is to give a detailed account of a series of re sults concerning some ergodic questions of quantum mechanics which have the past six years following the formulation of a generalized been addressed in Kolmogorov-Sinai entropy by A.Connes, H.Narnhofer and W.Thirring. Classical ergodicity and mixing are fully developed topics of mathematical physics dealing with the lowest levels in a hierarchy of increasingly random behaviours with the so-called Bernoulli systems at its apex showing a structure that characterizes them as Kolmogorov (K-) systems. It seems not only reasonable, but also inevitable to use classical ergodic theory as a guide in the study of ergodic behaviours of quantum systems. The question is which kind of random behaviours quantum systems can exhibit and whether there is any way of classifying them. Asymptotic statistical independence and, correspondingly, complete lack of control over the distant future are typical features of classical K-systems. These properties are fully characterized by the dynamical entropy of Kolmogorov and Sinai, so that the introduction of a similar concept for quantum systems has provided the opportunity of raising meaningful questions and of proposing some non-trivial answers to them. Since in the following we shall be mainly concerned with infinite quantum systems, the algebraic approach to quantum theory will provide us with the necessary analytical tools which can be used in the commutative context, too.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 232 pp. Englisch. Codice articolo 9783540570172
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540570172_new
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 232. Codice articolo 2658568925
Quantità: 4 disponibili