People have always been interested in numbers, in particular the natural numbers. Of course, we all have an intuitive notion of what these numbers are. In the late 19th century mathematicians, such as Grassmann, Frege and Dedekind, gave definitions for these familiar objects. Since then the development of axiomatic schemes for arithmetic have played a fundamental role in a logical understanding of mathematics. There has been a need for some time for a monograph on the metamathematics of first-order arithmetic. The aim of the book by Hajek and Pudlak is to cover some of the most important results in the study of a first order theory of the natural numbers, called Peano arithmetic and its fragments (subtheories). The field is quite active, but only a small part of the results has been covered in monographs. This book is divided into three parts. In Part A, the authors develop parts of mathematics and logic in various fragments. Part B is devoted to incompleteness. Part C studies systems that have the induction schema restricted to bounded formulas (Bounded Arithmetic). One highlight of this section is the relation of provability to computational complexity. The study of formal systems for arithmetic is a prerequisite for understanding results such as Goedel's theorems. This book is intended for those who want to learn more about such systems and who want to follow current research in the field. The book contains a bibliography of approximately 1000 items.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From the reviews: ..."This work is a very important contribution to the logical literature. It gives a survey of an incredible number of results and methods in the foundations of arithmetic, presented in a clear and systematic way. It will certainly be highly appreciated by specialists working in the field." Mathematical Reviews, USA 1994 ..."It is really a highly interesting book - a survey of a large amount of results presented in a systematic and clear way. It will serve as a source of information for those who want to learn meta-mathematics of first-order arithmetic as well as a reference book for people working in this field." Zentralblatt für Mathematik und Ihre Grenzgebiete, 781.1994.
Preliminaries.- A.- I: Arithmetic as Number Theory, Set Theory and Logic.- II: Fragments and Combinatorics.- B.- III: Self-Reference.- IV: Models of Fragments of Arithmetic.- C.- V: Bounded Arithmetic.- Bibliographical Remarks and Further Reading.- Index of Terms.- Index of Symbols.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiGRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiDa: BooksRun, Philadelphia, PA, U.S.A.
Paperback. Condizione: Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported Softcover reprint of the original 1st ed. 1993. Codice articolo 354063648X-11-1
Quantità: 1 disponibili
Da: HPB-Red, Dallas, TX, U.S.A.
paperback. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_302142506
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783540636489
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540636489_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -People have always been interested in numbers, in particular the natural numbers. Of course, we all have an intuitive notion of what these numbers are. In the late 19th century mathematicians, such as Grassmann, Frege and Dedekind, gave definitions for these familiar objects. Since then the development of axiomatic schemes for arithmetic have played a fundamental role in a logical understanding of mathematics. There has been a need for some time for a monograph on the metamathematics of first-order arithmetic. The aim of the book by Hajek and Pudlak is to cover some of the most important results in the study of a first order theory of the natural numbers, called Peano arithmetic and its fragments (subtheories). The field is quite active, but only a small part of the results has been covered in monographs. This book is divided into three parts. In Part A, the authors develop parts of mathematics and logic in various fragments. Part B is devoted to incompleteness. Part C studies systems that have the induction schema restricted to bounded formulas (Bounded Arithmetic). One highlight of this section is the relation of provability to computational complexity. The study of formal systems for arithmetic is a prerequisite for understanding results such as Gödel's theorems. This book is intended for those who want to learn more about such systems and who want to follow current research in the field. The book contains a bibliography of approximately 1000 items. 476 pp. Englisch. Codice articolo 9783540636489
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. * Coverage of incompleteness of interest to philosophers concerned with its implications * Coverage of computational complexity and its connections to provability will interest computer scientistsCoverage of incompleteness of interest to philosophers. Codice articolo 4896444
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - People have always been interested in numbers, in particular the natural numbers. Of course, we all have an intuitive notion of what these numbers are. In the late 19th century mathematicians, such as Grassmann, Frege and Dedekind, gave definitions for these familiar objects. Since then the development of axiomatic schemes for arithmetic have played a fundamental role in a logical understanding of mathematics. There has been a need for some time for a monograph on the metamathematics of first-order arithmetic. The aim of the book by Hajek and Pudlak is to cover some of the most important results in the study of a first order theory of the natural numbers, called Peano arithmetic and its fragments (subtheories). The field is quite active, but only a small part of the results has been covered in monographs. This book is divided into three parts. In Part A, the authors develop parts of mathematics and logic in various fragments. Part B is devoted to incompleteness. Part C studies systems that have the induction schema restricted to bounded formulas (Bounded Arithmetic). One highlight of this section is the relation of provability to computational complexity. The study of formal systems for arithmetic is a prerequisite for understanding results such as Gödel's theorems. This book is intended for those who want to learn more about such systems and who want to follow current research in the field. The book contains a bibliography of approximately 1000 items. Codice articolo 9783540636489
Quantità: 1 disponibili
Da: BennettBooksLtd, North Las Vegas, NV, U.S.A.
paperback. Condizione: New. In shrink wrap. Looks like an interesting title! Codice articolo Q-354063648X
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 476. Codice articolo 2698275747
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 476 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 95170172
Quantità: 4 disponibili