Shan-HweiNienhuys-Cheng(UniversityofRotterdam) DavidPage(UniversityofLouisville) BernhardPfahringer(AustrianResearchInstituteforAI) CelineRouveirol(UniversityofParis) ClaudeSammut(UniversityofNewSouthWales) MicheleSebag(EcolePolytechnique) AshwinSrinivasan(UniversityofOxford) PrasadTadepalli(OregonStateUniversity) StefanWrobel(GMDResearchCenterforInformationTechnology) OrganizationalSupport TheAlbatrossCongressTouristAgency,Bled Center for Knowledge Transfer in Information Technologies, Jo zef Stefan Institute,Ljubljana SponsorsofILP-99 ILPnet2,NetworkofExcellenceinInductiveLogicProgramming COMPULOGNet,EuropeanNetworkofExcellenceinComputationalLogic Jo zefStefanInstitute,Ljubljana LPASoftware,Inc. UniversityofBristol TableofContents I InvitedPapers ProbabilisticRelationalModels D. Koller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 InductiveDatabases(Abstract) H. Mannila. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SomeElementsofMachineLearning(ExtendedAbstract) J. R. Quinlan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 II ContributedPapers Re nementOperatorsCanBe(Weakly)Perfect L. Badea,M. Stanciu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 CombiningDivide-and-ConquerandSeparate-and-ConquerforE cientand E ectiveRuleInduction H. Bostr¨om,L. Asker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Re ningCompleteHypothesesinILP I. Bratko. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 AcquiringGraphicDesignKnowledge withNonmonotonicInductiveLearning K. Chiba,H. Ohwada,F. Mizoguchi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 MorphosyntacticTaggingofSloveneUsingProgol J. Cussens,S. D zeroski,T. Erjavec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 ExperimentsinPredictingBiodegradability S. D zeroski,H. Blockeel,B. Kompare,S. Kramer, B. Pfahringer,W. VanLaer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 1BC:AFirst-OrderBayesianClassi er P. Flach,N. Lachiche. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 SortedDownwardRe nement:BuildingBackgroundKnowledge intoaRe nementOperatorforInductiveLogicProgramming A. M. Frisch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 AStrongCompleteSchemaforInductiveFunctionalLogicProgramming J. Hern andez-Orallo,M. J. Ram rez-Quintana. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 ApplicationofDi erentLearningMethods toHungarianPart-of-SpeechTagging T. Horv ath,Z. Alexin,T. Gyim othy,S. Wrobel . . . . . . . . . . . . . . . . . . . . . . . . . . 128 VIII TableofContents CombiningLAPISandWordNetfortheLearningofLRParserswith OptimalSemanticConstraints D. Kazakov. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 LearningWordSegmentationRulesforTagPrediction D. Kazakov,S. Manandhar,T. Erjavec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 ApproximateILPRulesbyBackpropagationNeuralNetwork: AResultonThaiCharacterRecognition B. Kijsirikul,S. Sinthupinyo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 RuleEvaluationMeasures:AUnifyingView N. Lavra c,P. Flach,B. Zupan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 ImprovingPart-of-SpeechDisambiguationRulesbyAdding LinguisticKnowledge N. Lindberg,M. Eineborg
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
I Invited Papers.- Probabilistic Relational Models.- Inductive Databases.- Some Elements of Machine Learning.- II Contributed Papers.- Refinement Operators Can Be (Weakly) Perfect.- Combining Divide-and-Conquer and Separate-and-Conquer for Efficient and Effective Rule Induction.- Refining Complete Hypotheses in ILP.- Acquiring Graphic Design Knowledge with Nonmonotonic Inductive Learning.- Morphosyntactic Tagging of Slovene Using Progol.- Experiments in Predicting Biodegradability.- 1BC: A First-Order Bayesian Classifier.- Sorted Downward Refinement: Building Background Knowledge into a Refinement Operator for Inductive Logic Programming.- A Strong Complete Schema for Inductive Functional Logic Programming.- Application of Different Learning Methods to Hungarian Part-of-Speech Tagging.- Combining LAPIS and WordNet for the Learning of LR Parsers with Optimal Semantic Constraints.- Learning Word Segmentation Rules for Tag Prediction.- Approximate ILP Rules by Backpropagation Neural Network: A Result on Thai Character Recognition.- Rule Evaluation Measures: A Unifying View.- Improving Part of Speech Disambiguation Rules by Adding Linguistic Knowledge.- On Sufficient Conditions for Learnability of Logic Programs from Positive Data.- A Bounded Search Space of Clausal Theories.- Discovering New Knowledge from Graph Data Using Inductive Logic Programming.- Analogical Prediction.- Generalizing Refinement Operators to Learn Prenex Conjunctive Normal Forms.- Theory Recovery.- Instance based function learning.- Some Properties of Inverse Resolution in Normal Logic Programs.- An Assessment of ILP-assisted models for toxicology and the PTE-3 experiment.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 7,95 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Germania
Broschiert. Condizione: Gut. 302 Seiten; Das hier angebotene Buch stammt aus einer teilaufgelösten wissenschaftlichen Bibliothek und trägt die entsprechenden Kennzeichnungen (Rückenschild, Instituts-Stempel.); leichte altersbedingte Anbräunung des Papiers; der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 430. Codice articolo 1798351
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. I Invited Papers.- Probabilistic Relational Models.- Inductive Databases.- Some Elements of Machine Learning.- II Contributed Papers.- Refinement Operators Can Be (Weakly) Perfect.- Combining Divide-and-Conquer and Separate-and-Conquer for Efficient and Eff. Codice articolo 4897526
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Thisvolumecontains3invitedand24submittedpaperspresentedattheNinth InternationalWorkshoponInductiveLogicProgramming,ILP-99. The24acc- tedpaperswereselectedbytheprogramcommitteefromthe40paperssubmitted toILP-99. Eachpaperwasreviewedbythreereferees,applyinghighreviewing standards. ILP-99washeldinBled,Slovenia,24{27June1999. Itwascollocatedwith theSixteenthInternationalConferenceonMachineLearning,ICML-99,held27{ 30June1999. On27June,ILP-99andICML-99weregivenajointinvitedtalk byJ. RossQuinlanandajointpostersessionwhereallthepapersacceptedat ILP-99andICML-99werepresented. TheproceedingsofICML-99(editedby IvanBratkoandSa soD zeroski)arepublishedbyMorganKaufmann. WewishtothankalltheauthorswhosubmittedtheirpaperstoILP-99,the programcommitteemembersandotherreviewersfortheirhelpinselecti nga high-qualityprogram,andtheinvitedspeakers:DaphneKoller,HeikkiMannila, andJ. RossQuinlan. ThanksareduetoTanjaUrban ci candherteamandMajda Zidanskiandherteamfortheorganizationalsupportprovided. Wewishtothank AlfredHofmannandAnnaKramerofSpringer-Verlagfortheircooperationin publishing these proceedings. Finally, we gratefully acknowledge the nancial supportprovidedbythesponsorsofILP-99. April1999 Sa soD zeroski PeterFlach ILP-99ProgramCommittee FrancescoBergadano(UniversityofTorino) HenrikBostr om(UniversityofStockholm) IvanBratko(UniversityofLjubljana) WilliamCohen(AT&TResearchLabs) JamesCussens(UniversityofYork) LucDeRaedt(UniversityofLeuven) Sa soD zeroski(Jo zefStefanInstitute,co-chair) PeterFlach(UniversityofBristol,co-chair) AlanFrisch(UniversityofYork) KoichiFurukawa(KeioUniversity) RoniKhardon(UniversityofEdinburgh) NadaLavra c(Jo zefStefanInstitute) JohnLloyd(AustralianNationalUniversity) StanMatwin(UniversityofOttawa) RaymondMooney(UniversityofTexas) StephenMuggleton(UniversityofYork) Shan-HweiNienhuys-Cheng(UniversityofRotterdam) DavidPage(UniversityofLouisville) BernhardPfahringer(AustrianResearchInstituteforAI) CelineRouveirol(UniversityofParis) ClaudeSammut(UniversityofNewSouthWales) MicheleSebag(EcolePolytechnique) AshwinSrinivasan(UniversityofOxford) PrasadTadepalli(OregonStateUniversity) StefanWrobel(GMDResearchCenterforInformationTechnology) OrganizationalSupport TheAlbatrossCongressTouristAgency,Bled Center for Knowledge Transfer in Information Technologies, Jo zef Stefan Institute,Ljubljana SponsorsofILP-99 ILPnet2,NetworkofExcellenceinInductiveLogicProgramming COMPULOGNet,EuropeanNetworkofExcellenceinComputationalLogic Jo zefStefanInstitute,Ljubljana LPASoftware,Inc. UniversityofBristol TableofContents I InvitedPapers ProbabilisticRelationalModels D. Koller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 InductiveDatabases(Abstract) H. Mannila. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SomeElementsofMachineLearning(ExtendedAbstract) J. R. Quinlan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 II ContributedPapers Re nementOperatorsCanBe(Weakly)Perfect L. Badea,M. Stanciu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 CombiningDivide-and-ConquerandSeparate-and-ConquerforE cientand E ectiveRuleInduction H. Bostr om,L. Asker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Re ningCompleteHypothesesinILP I. Bratko. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 AcquiringGraphicDesignKnowledge withNonmonotonicInductiveLearning K. Chiba,H. Ohwada,F. Mizoguchi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 MorphosyntacticTaggingofSloveneUsingProgol J. Cussens,S. D zeroski,T. Erjavec . . . . . . . . . . . . . . Codice articolo 9783540661092
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Shan-HweiNienhuys-Cheng(UniversityofRotterdam) DavidPage(UniversityofLouisville) BernhardPfahringer(AustrianResearchInstituteforAI) CelineRouveirol(UniversityofParis) ClaudeSammut(UniversityofNewSouthWales) MicheleSebag(EcolePolytechnique) AshwinSrinivasan(UniversityofOxford) PrasadTadepalli(OregonStateUniversity) StefanWrobel(GMDResearchCenterforInformationTechnology) OrganizationalSupport TheAlbatrossCongressTouristAgency,Bled Center for Knowledge Transfer in Information Technologies, Jo zef Stefan Institute,Ljubljana SponsorsofILP-99 ILPnet2,NetworkofExcellenceinInductiveLogicProgramming COMPULOGNet,EuropeanNetworkofExcellenceinComputationalLogic Jo zefStefanInstitute,Ljubljana LPASoftware,Inc. UniversityofBristol TableofContents I InvitedPapers ProbabilisticRelationalModels D. Koller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 InductiveDatabases(Abstract) H. Mannila. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SomeElementsofMachineLearning(ExtendedAbstract) J. R. Quinlan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 II ContributedPapers Re nementOperatorsCanBe(Weakly)Perfect L. Badea,M. Stanciu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 CombiningDivide-and-ConquerandSeparate-and-ConquerforE cientand E ectiveRuleInduction H. Bostr¿om,L. Asker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Re ningCompleteHypothesesinILP I. Bratko. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 AcquiringGraphicDesignKnowledge withNonmonotonicInductiveLearning K. Chiba,H. Ohwada,F. Mizoguchi. . . . . . . . . . . . . . . 320 pp. Englisch. Codice articolo 9783540661092
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 918509-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540661092_new
Quantità: Più di 20 disponibili
Da: GuthrieBooks, Spring Branch, TX, U.S.A.
Paperback. Condizione: Very Good. Ex-library paperback in very nice condition with the usual markings and attachments. Codice articolo UTD14a-1121
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783540661092
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 918509-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 918509
Quantità: Più di 20 disponibili