The subject of partial differential equations holds an exciting place in mathematics. Inevitably, the subject falls into several areas of mathematics. At one extreme the interest lies in the existence and uniqueness of solutions, and the functional analysis of the proofs of these properties. At the other extreme lies the applied mathematical and engineering quest to find useful solutions, either analytically or numerically, to these important equations which can be used in design and construction. The book presents a clear introduction of the methods and underlying theory used in the numerical solution of partial differential equations. After revising the mathematical preliminaries, the book covers the finite difference method of parabolic or heat equations, hyperbolic or wave equations and elliptic or Laplace equations. Throughout, the emphasis is on the practical solution rather than the theoretical background, without sacrificing rigour.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1. Background Mathematics.- 1.1 Introduction.- 1.2 Vector and Matrix Norms.- 1.3 Gerschgorin’s Theorems.- 1.4 Iterative Solution of Linear Algebraic Equations.- 1.5 Further Results on Eigenvalues and Eigenvectors.- 1.6 Classification of Second Order Partial Differential Equations.- 2. Finite Differences and Parabolic Equations.- 2.1 Finite Difference Approximations to Derivatives.- 2.2 Parabolic Equations.- 2.3 Local Truncation Error.- 2.4 Consistency.- 2.5 Convergence.- 2.6 Stability.- 2.7 The Crank-Nicolson Implicit Method.- 2.8 Parabolic Equations in Cylindrical and Spherical Polar Coordinates.- 3. Hyperbolic Equations and Characteristics.- 3.1 First Order Quasi-linear Equations.- 3.2 Lax-Wendroff and Wendroff Methods.- 3.3 Second Order Quasi-linear Hyperbolic Equations.- 3.4 Reetangular Nets and Finite Difference Methods for Second Order Hyperbolic Equations.- 4. Elliptic Equations.- 4.1 Laplace’s Equation.- 4.2 Curved Boundaries.- 4.3 Solution of Sparse Systems of Linear Equations.- 5. Finite Element Method for Ordinary Differential Equations.- 5.1 Introduction.- 5.2 The Collocation Method.- 5.3 The Least Squares Method.- 5.4 The Galerkin Method.- 5.5 Symmetrie Variational Forrnulation.- 5.6 Finite Element Method.- 5.7 Some Worked Examples.- 6. Finite Elements for Partial Differential Equations.- 6.1 Introduction.- 6.2 Variational Methods.- 6.3 Some Specific Elements.- 6.4 Assembly of the Elements.- 6.5 Worked Example.- 6.6 A General Variational Principle.- 6.7 Assembly and Solution.- 6.8 Solution of the Worked Example.- 6.9 Further Interpolation Functions.- 6.10 Quadrature Methods and Storage Considerations.- 6.11 Boundary Element Method.- A. Solutions to Exercises.- References and Further Reading.
Hard to Find book
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 7,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Antiquariat Bookfarm, Löbnitz, Germania
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 35 EVA 9783540761259 Sprache: Englisch Gewicht in Gramm: 550. Codice articolo 2508093
Quantità: 1 disponibili
Da: Antiquariat Bookfarm, Löbnitz, Germania
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 35 EVA 9783540761259 Sprache: Englisch Gewicht in Gramm: 550. Codice articolo 2504497
Quantità: 1 disponibili
Da: WorldofBooks, Goring-By-Sea, WS, Regno Unito
Paperback. Condizione: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Codice articolo GOR005319021
Quantità: 2 disponibili
Da: Antiquariat Bernhardt, Kassel, Germania
Broschiert. Condizione: Sehr gut. Zust: Gutes Exemplar. XII, 290 Seiten, Englisch 550g. Codice articolo 493113
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. * THIS BOOK IS THE COMPANION VOLUME TO ANALYTIC METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS. * THE EMPHASIS IS ON THE PRACTICAL SOLUTION OF PROBLEMS RATHER THAN THE THEORETICAL BACKGROUND * CONTAINS NUMEROUS EXERCISES WITH WORKED SOLUTIONS.The subject of. Codice articolo 4900374
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. James Clerk Maxwell, for example, put electricity and magnetism into a unified theory by establishing Maxwell's equations for electromagnetic theory, which gave solutions for prob lems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechanical processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forecasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics. 304 pp. Englisch. Codice articolo 9783540761259
Quantità: 2 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783540761259
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. James Clerk Maxwell, for example, put electricity and magnetism into a unified theory by establishing Maxwell's equations for electromagnetic theory, which gave solutions for prob lems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechanical processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forecasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics. Codice articolo 9783540761259
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. James Clerk Maxwell, for example, put electricity and magnetism into a unified theory by establishing Maxwell's equations for electromagnetic theory, which gave solutions for prob lems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechanical processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forecasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 304 pp. Englisch. Codice articolo 9783540761259
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540761259_new
Quantità: Più di 20 disponibili