Articoli correlati a Stochastic Optimization Methods

Stochastic Optimization Methods - Rilegato

 
9783540794578: Stochastic Optimization Methods

Sinossi

Optimization problems arising in practice involve random model parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insenistive with respect to random parameter variations, appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures, differentiation formulas for probabilities and expectations.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Dr. Kurt Marti is a full Professor of Engineering Mathematics at the „Federal Armed Forces University of Munich“. He is Chairman of the IFIP-Working Group 7.7 on “Stochastic Optimization” and has been Chairman of the GAMM-Special Interest Group “Applied Stochastics and Optimization”. Professor Marti has published several books, both in German and in English, and he is author of more than 160 papers in refereed journals.

Dalla quarta di copertina

Optimization problems arising in practice involve random model parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures, differentiation formulas for probabilities and expectations.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 28,79 per la spedizione da Regno Unito a U.S.A.

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

Risultati della ricerca per Stochastic Optimization Methods

Foto dell'editore

Marti, Kurt
Editore: Springer, 2008
ISBN 10: 3540794573 ISBN 13: 9783540794578
Nuovo Rilegato

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: New. New. book. Codice articolo ERICA82935407945736

Contatta il venditore

Compra nuovo

EUR 362,97
Convertire valuta
Spese di spedizione: EUR 28,79
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello