Articoli correlati a Design and Analysis of Learning Classifier Systems:...

Design and Analysis of Learning Classifier Systems: A Probabilistic Approach: 139 - Rilegato

 
9783540798651: Design and Analysis of Learning Classifier Systems: A Probabilistic Approach: 139

Sinossi

This book is probably best summarized as providing a principled foundation for Learning Classi?er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de?nition – derived from machine learning – of “a good set of cl- si?ers”, based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi?ers using that de?nition as a ?tness criterion, seeing ifthe setprovidesa goodsolutionto twodi?erent function approximation problems. It appears to, meaning that in some sense his de?nition of “good set of classi?ers” (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi?ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Dalla quarta di copertina

This book provides a comprehensive introduction to the design and analysis of Learning Classifier Systems (LCS) from the perspective of machine learning. LCS are a family of methods for handling unsupervised learning, supervised learning and sequential decision tasks by decomposing larger problem spaces into easy-to-handle subproblems. Contrary to commonly approaching their design and analysis from the viewpoint of evolutionary computation, this book instead promotes a probabilistic model-based approach, based on their defining question "What is an LCS supposed to learn?". Systematically following this approach, it is shown how generic machine learning methods can be applied to design LCS algorithms from the first principles of their underlying probabilistic model, which is in this book -- for illustrative purposes -- closely related to the currently prominent XCS classifier system. The approach is holistic in the sense that the uniform goal-driven design metaphor essentially covers all aspects of LCS and puts them on a solid foundation, in addition to enabling the transfer of the theoretical foundation of the various applied machine learning methods onto LCS. Thus, it does not only advance the analysis of existing LCS but also puts forward the design of new LCS within that same framework.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,08 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

GRATIS per la spedizione da Australia a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783642098611: Design and Analysis of Learning Classifier Systems: A Probabilistic Approach: 139

Edizione in evidenza

ISBN 10:  3642098614 ISBN 13:  9783642098611
Casa editrice: Springer, 2010
Brossura

Risultati della ricerca per Design and Analysis of Learning Classifier Systems:...

Foto dell'editore

Drugowitsch, Jan
Editore: Springer, 2008
ISBN 10: 354079865X ISBN 13: 9783540798651
Nuovo Rilegato

Da: ALLBOOKS1, Direk, SA, Australia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Codice articolo SHUB396891

Contatta il venditore

Compra nuovo

EUR 49,55
Convertire valuta
Spese di spedizione: GRATIS
Da: Australia a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

0
Editore: Springer, 2008
ISBN 10: 354079865X ISBN 13: 9783540798651
Nuovo Rilegato

Da: Basi6 International, Irving, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-271022

Contatta il venditore

Compra nuovo

EUR 97,26
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Drugowitsch, Jan
Editore: Springer, 2008
ISBN 10: 354079865X ISBN 13: 9783540798651
Nuovo Rilegato

Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-84567

Contatta il venditore

Compra nuovo

EUR 98,50
Convertire valuta
Spese di spedizione: GRATIS
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jan Drugowitsch
ISBN 10: 354079865X ISBN 13: 9783540798651
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Latest research in the area of Learning Classifier SystemsPresents a probabilistic approach to Design and Analysis of Learning Classifier SystemsThis book is probably best summarized as providing a principled foundation for Learning Classi. Codice articolo 4901349

Contatta il venditore

Compra nuovo

EUR 92,27
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jan Drugowitsch
ISBN 10: 354079865X ISBN 13: 9783540798651
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition - derived from machine learning - of 'a good set of cl- si ers', based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of 'good set of classi ers' (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS. 284 pp. Englisch. Codice articolo 9783540798651

Contatta il venditore

Compra nuovo

EUR 106,99
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Drugowitsch, Jan
Editore: Springer, 2008
ISBN 10: 354079865X ISBN 13: 9783540798651
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 5647115-n

Contatta il venditore

Compra nuovo

EUR 103,66
Convertire valuta
Spese di spedizione: EUR 17,08
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Foto dell'editore

Drugowitsch, Jan
Editore: Springer, 2008
ISBN 10: 354079865X ISBN 13: 9783540798651
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783540798651_new

Contatta il venditore

Compra nuovo

EUR 110,99
Convertire valuta
Spese di spedizione: EUR 10,29
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jan Drugowitsch
ISBN 10: 354079865X ISBN 13: 9783540798651
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition - derived from machine learning - of 'a good set of cl- si ers', based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of 'good set of classi ers' (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS. Codice articolo 9783540798651

Contatta il venditore

Compra nuovo

EUR 106,99
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jan Drugowitsch
ISBN 10: 354079865X ISBN 13: 9783540798651
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This book is probably best summarized as providing a principled foundation for Learning Classi er Systems. Something is happening in LCS, and particularly XCS and its variants that clearly often produces good results. Jan Drug- itsch wishes to understand this from a broader machine learning perspective and thereby perhaps to improve the systems. His approach centers on choosing a statistical de nition ¿ derived from machine learning ¿ of ¿a good set of cl- si ers¿, based on a model according to which such a set represents the data. For an illustration of this approach, he designs the model to be close to XCS, and tests it by evolving a set of classi ers using that de nition as a tness criterion, seeing ifthe setprovidesa goodsolutionto twodi erent function approximation problems. It appears to, meaning that in some sense his de nition of ¿good set of classi ers¿ (also, in his terms, a good model structure) captures the essence, in machine learning terms, of what XCS is doing. In the process of designing the model, the author describes its components and their training in clear detail and links it to currently used LCS, giving rise to recommendations for how those LCS can directly gain from the design of the model and its probabilistic formulation. The seeming complexity of evaluating the quality ofa set ofclassi ersis alleviatedby giving analgorithmicdescription of how to do it, which is carried out via a simple Pittsburgh-style LCS.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch. Codice articolo 9783540798651

Contatta il venditore

Compra nuovo

EUR 106,99
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Drugowitsch, Jan
Editore: Springer, 2008
ISBN 10: 354079865X ISBN 13: 9783540798651
Nuovo Rilegato

Da: ALLBOOKS1, Direk, SA, Australia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Codice articolo SHUB271022

Contatta il venditore

Compra nuovo

EUR 122,33
Convertire valuta
Spese di spedizione: GRATIS
Da: Australia a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 4 copie di questo libro

Vedi tutti i risultati per questo libro