There are many ways of introducing the concept of probability in classical, deterministic physics. This volume is concerned with one approach, known as "the method of arbitrary functions", which was first considered by Poincare. Essentially, the method proceeds by associating some uncertainty to our knowledge of both the initial conditions and the values of the physical constants that characterize the evolution of a physical system. By modelling this uncertainty by a probability density distribution, it is then possible to analyze how the state of the system evolves through time. This approach may be applied to a wide variety of classical problems and the author considers here examples as diverse as bouncing balls, simple and coupled harmonic oscillators, integrable systems (such as spinning tops), planetary motion, and billiards. An important aspect of this account is to study the speed of convergence for solutions in order to determine the practical relevance of the method of arbitrary functions for specific examples. Consequently, both new results on convergence, and tractable upper bounds are derived and applied.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,02 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 7,67 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 164. Codice articolo 2647979265
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 164. Codice articolo 44803294
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 164. Codice articolo 1847979275
Quantità: 1 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA75835409774065
Quantità: 1 disponibili