An advanced artificial intelligence based algorithm for detecting and classifying faults on the power system transmission line is introduced. The approach utilizes self-organized, Adaptive Resonance Theory (ART) neural network, combined with fuzzy decision rule for interpretation of neural network outputs. Training of the neural network is based on the combined use of unsupervised and supervised learning methods. During training, a set of input events is transformed into a set of prototypes of typical input events. During application, real events are classified based on the interpretation of their matching to the prototypes through fuzzy decision rule. This study introduces several enhancements to the original version of the ART algorithm: suitable preprocessing of neural network inputs, improvement in the concept of supervised learning, fuzzyfication of neural network outputs, and utilization of on- line learning. Simulation results show improved recognition capabilities compared to a previous version of ART neural network algorithm, Multilayer Perceptron (MLP) neural network algorithm, and impedance based distance relay
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Slavko Vasilic received his Ph.D in Electrical Engineering from Texas A&M University in 2004, and M.S.E.E. from University of Belgrade in 1999. He specializes in power systems, control systems, signal processing and artificial intelligence. He is a registered professional engineer in California and Maryland, and a member of IEEE.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,31 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Vasilic SlavkoSlavko Vasilic received his Ph.D in Electrical Engineering from Texas A&M University in 2004, and M.S.E.E. from University of Belgrade in 1999. He specializes in power systems, control systems, signal processing and . Codice articolo 4968014
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783639216738
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783639216738
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783639216738_new
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783639216738
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 7865491-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 7865491-n
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9783639216738
Quantità: 10 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - An advanced artificial intelligence based algorithm for detecting and classifying faults on the power system transmission line is introduced. The approach utilizes self-organized, Adaptive Resonance Theory (ART) neural network, combined with fuzzy decision rule for interpretation of neural network outputs. Training of the neural network is based on the combined use of unsupervised and supervised learning methods. During training, a set of input events is transformed into a set of prototypes of typical input events. During application, real events are classified based on the interpretation of their matching to the prototypes through fuzzy decision rule. This study introduces several enhancements to the original version of the ART algorithm: suitable preprocessing of neural network inputs, improvement in the concept of supervised learning, fuzzyfication of neural network outputs, and utilization of on- line learning. Simulation results show improved recognition capabilities compared to a previous version of ART neural network algorithm, Multilayer Perceptron (MLP) neural network algorithm, and impedance based distance relay. Codice articolo 9783639216738
Quantità: 2 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLING22Oct2817100451722
Quantità: Più di 20 disponibili