Articoli correlati a Large Scale Support Vector Machines Algorithms for...

Large Scale Support Vector Machines Algorithms for Visual Recognition - Brossura

 
9783639715750: Large Scale Support Vector Machines Algorithms for Visual Recognition

Sinossi

Visual recognition remains an extremely challenging problem in computer vision. Most previous approaches have been evaluated on small datasets. However, ImageNet dataset with millions images for thousands classes poses more challenges for the next generation of vision mechanisms. Learning an efficient visual classifier and constructing a robust visual representation in a large scale scenario are two main research issues. In this book, we present how to tackle these issues. Firstly, a novel approach is presented by using several local descriptors to improve the discriminative power of image representation. Secondly, the state-of-the-art SVMs are extended by building the balanced bagging classifiers with sampling strategy and parallelizing the training process with several multi-core computers. Thirdly, the binary stochastic gradient descent SVM is developed to the new multiclass SVM for efficiently classifying large image datasets into many classes. Finally, when the training data cannot fit into computer memory, the training task of SVM becomes more complicated to deal with. This challenge is addressed by an incremental learning method for both large scale linear and nonlinear SVMs

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Large Scale Support Vector Machines Algorithms for...

Immagini fornite dal venditore

Thanh-Nghi Doan|Francois Poulet
Editore: Scholars\' Press, 2014
ISBN 10: 3639715756 ISBN 13: 9783639715750
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Doan Thanh-NghiThanh-Nghi Doan received his Doctorate degree in computer science from University of Rennes 1, France, 2013. He was working as a Ph.D. candidate in TEXMEX Research Team, IRISA, France. Currently, he is working at An Gi. Codice articolo 151398522

Contatta il venditore

Compra nuovo

EUR 64,09
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thanh-Nghi Doan
Editore: Scholars' Press Mai 2014, 2014
ISBN 10: 3639715756 ISBN 13: 9783639715750
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Visual recognition remains an extremely challenging problem in computer vision. Most previous approaches have been evaluated on small datasets. However, ImageNet dataset with millions images for thousands classes poses more challenges for the next generation of vision mechanisms. Learning an efficient visual classifier and constructing a robust visual representation in a large scale scenario are two main research issues. In this book, we present how to tackle these issues. Firstly, a novel approach is presented by using several local descriptors to improve the discriminative power of image representation. Secondly, the state-of-the-art SVMs are extended by building the balanced bagging classifiers with sampling strategy and parallelizing the training process with several multi-core computers. Thirdly, the binary stochastic gradient descent SVM is developed to the new multiclass SVM for efficiently classifying large image datasets into many classes. Finally, when the training data cannot fit into computer memory, the training task of SVM becomes more complicated to deal with. This challenge is addressed by an incremental learning method for both large scale linear and nonlinear SVMs 164 pp. Englisch. Codice articolo 9783639715750

Contatta il venditore

Compra nuovo

EUR 79,90
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thanh-Nghi Doan
Editore: Scholars' Press, 2014
ISBN 10: 3639715756 ISBN 13: 9783639715750
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Visual recognition remains an extremely challenging problem in computer vision. Most previous approaches have been evaluated on small datasets. However, ImageNet dataset with millions images for thousands classes poses more challenges for the next generation of vision mechanisms. Learning an efficient visual classifier and constructing a robust visual representation in a large scale scenario are two main research issues. In this book, we present how to tackle these issues. Firstly, a novel approach is presented by using several local descriptors to improve the discriminative power of image representation. Secondly, the state-of-the-art SVMs are extended by building the balanced bagging classifiers with sampling strategy and parallelizing the training process with several multi-core computers. Thirdly, the binary stochastic gradient descent SVM is developed to the new multiclass SVM for efficiently classifying large image datasets into many classes. Finally, when the training data cannot fit into computer memory, the training task of SVM becomes more complicated to deal with. This challenge is addressed by an incremental learning method for both large scale linear and nonlinear SVMs. Codice articolo 9783639715750

Contatta il venditore

Compra nuovo

EUR 79,90
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thanh-Nghi Doan
Editore: Scholars' Press Mai 2014, 2014
ISBN 10: 3639715756 ISBN 13: 9783639715750
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Visual recognition remains an extremely challenging problem in computer vision. Most previous approaches have been evaluated on small datasets. However, ImageNet dataset with millions images for thousands classes poses more challenges for the next generation of vision mechanisms. Learning an efficient visual classifier and constructing a robust visual representation in a large scale scenario are two main research issues. In this book, we present how to tackle these issues. Firstly, a novel approach is presented by using several local descriptors to improve the discriminative power of image representation. Secondly, the state-of-the-art SVMs are extended by building the balanced bagging classifiers with sampling strategy and parallelizing the training process with several multi-core computers. Thirdly, the binary stochastic gradient descent SVM is developed to the new multiclass SVM for efficiently classifying large image datasets into many classes. Finally, when the training data cannot fit into computer memory, the training task of SVM becomes more complicated to deal with. This challenge is addressed by an incremental learning method for both large scale linear and nonlinear SVMsVDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 164 pp. Englisch. Codice articolo 9783639715750

Contatta il venditore

Compra nuovo

EUR 79,90
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Doan, Thanh-Nghi; Poulet, Francois
ISBN 10: 3639715756 ISBN 13: 9783639715750
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 164. Codice articolo 26128106464

Contatta il venditore

Compra nuovo

EUR 107,21
Convertire valuta
Spese di spedizione: EUR 7,70
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Doan, Thanh-Nghi; Poulet, Francois
ISBN 10: 3639715756 ISBN 13: 9783639715750
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand pp. 164 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Codice articolo 131399743

Contatta il venditore

Compra nuovo

EUR 112,47
Convertire valuta
Spese di spedizione: EUR 10,22
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Doan, Thanh-Nghi; Poulet, Francois
ISBN 10: 3639715756 ISBN 13: 9783639715750
Nuovo Brossura
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND pp. 164. Codice articolo 18128106474

Contatta il venditore

Compra nuovo

EUR 117,10
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello