Modeling of matrix-fracture transfer function is important in the simulation of fluid flow in fractured porous media using a dual-porosity concept. One of the main focuses of this book is to find the transfer function for the single-phase flow of compressible fluids in fractured media using the solution of nonlinear gas diffusivity equation. The developed shape factor and transfer function can be used as an input for modeling flow of compressible fluids in dual-porosity systems. Another major purpose of this study is to investigate the effect of the fracture pressure depletion regime on the shape factor and transfer function for single-phase flow of a compressible fluid. For accurate prediction of fluid transfer between the matrix and fracture systems the effect of variable block size distribution should be considered. The proposed model is also able to simulate fluid exchange between matrix and fracture for continuous or discrete block size distributions. This solution can be simplified to model flow of slightly compressible fluids like water or oil in dual-porosity (fractured porous) media.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Ehsan currently is a research associate in the Catalysis for Heavy oil Upgrading and Reservoir Simulation Group at the University of Calgary. He completed his PhD in Petroleum Engineering at the University of Calgary on January 2014. Ehsan has B.Sc. and M.Sc. degree in Petroleum Reservoir Engineering from Petroleum University of Technology, Iran.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Ranjbar EhsanEhsan currently is a research associate in the Catalysis for Heavy oil Upgrading and Reservoir Simulation Group at the University of Calgary. He completed his PhD in Petroleum Engineering at the University of Calgary on . Codice articolo 4999643
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783639716078
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9783639716078
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783639716078_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Modeling of matrix-fracture transfer function is important in the simulation of fluid flow in fractured porous media using a dual-porosity concept. One of the main focuses of this book is to find the transfer function for the single-phase flow of compressible fluids in fractured media using the solution of nonlinear gas diffusivity equation. The developed shape factor and transfer function can be used as an input for modeling flow of compressible fluids in dual-porosity systems. Another major purpose of this study is to investigate the effect of the fracture pressure depletion regime on the shape factor and transfer function for single-phase flow of a compressible fluid. For accurate prediction of fluid transfer between the matrix and fracture systems the effect of variable block size distribution should be considered. The proposed model is also able to simulate fluid exchange between matrix and fracture for continuous or discrete block size distributions. This solution can be simplified to model flow of slightly compressible fluids like water or oil in dual-porosity (fractured porous) media. 200 pp. Englisch. Codice articolo 9783639716078
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Modeling of matrix-fracture transfer function is important in the simulation of fluid flow in fractured porous media using a dual-porosity concept. One of the main focuses of this book is to find the transfer function for the single-phase flow of compressible fluids in fractured media using the solution of nonlinear gas diffusivity equation. The developed shape factor and transfer function can be used as an input for modeling flow of compressible fluids in dual-porosity systems. Another major purpose of this study is to investigate the effect of the fracture pressure depletion regime on the shape factor and transfer function for single-phase flow of a compressible fluid. For accurate prediction of fluid transfer between the matrix and fracture systems the effect of variable block size distribution should be considered. The proposed model is also able to simulate fluid exchange between matrix and fracture for continuous or discrete block size distributions. This solution can be simplified to model flow of slightly compressible fluids like water or oil in dual-porosity (fractured porous) media. Codice articolo 9783639716078
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Modeling of matrix-fracture transfer function is important in the simulation of fluid flow in fractured porous media using a dual-porosity concept. One of the main focuses of this book is to find the transfer function for the single-phase flow of compressible fluids in fractured media using the solution of nonlinear gas diffusivity equation. The developed shape factor and transfer function can be used as an input for modeling flow of compressible fluids in dual-porosity systems. Another major purpose of this study is to investigate the effect of the fracture pressure depletion regime on the shape factor and transfer function for single-phase flow of a compressible fluid. For accurate prediction of fluid transfer between the matrix and fracture systems the effect of variable block size distribution should be considered. The proposed model is also able to simulate fluid exchange between matrix and fracture for continuous or discrete block size distributions. This solution can be simplified to model flow of slightly compressible fluids like water or oil in dual-porosity (fractured porous) media.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 200 pp. Englisch. Codice articolo 9783639716078
Quantità: 1 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9783639716078
Quantità: 10 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020206334
Quantità: Più di 20 disponibili