Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy extraction from a rotating black hole immersed in an external magnetic field. Finally, on the basis of the full MHD version of the Grad-Shafranov equation the author discusses the problems of jet collimation and particle acceleration in Active Galactic Nuclei, radio pulsars, and Young Stellar Objects. The comparison of the analytical results with numerical simulations demonstrates their good agreement. Assuming that the reader is familiar with the basic physical and mathematical concepts of General Relativity, the author uses the 3+1 split approach which allows the formulation of all results in terms of physically clear language of three dimensional vectors. The book contains detailed derivations of equations, numerous exercises, and an extensive bibliography. It therefore serves as both an introductory text for graduate students and a valuable reference work for researchers in the field.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From the reviews: “The volume primarily addresses the Grad-Shafranov approach to describe axisymmetric stationary flows around astrophysical objects, including ones where General Relativity is important. ... Each chapter has an abstract and an introduction to the kinds of sources to which its equations apply. ... the astrophysics-group ... able to make more use of it than I can.” (Viginia Trimble, The Observatory, Vol. 130 (1214), June, 2010)
Preface.............................................................. 5 Introduction......................................................... 9 Chapter 1 Hydrodynamic limit - classical problems of accretion and ejection.... 13 1.1 Astrophysical introduction - accretion onto compact objects.... 13 1 1 1 Accretion disks........................................... 14 1.1.2 Standard model............................................ 17 1.1.3 ADAF, ADIOS, etc.......................................... 20 1.2 Basic properties of transonic hydrodynamical flows............. 22 1.2.1 Basic equations........................................... 22 1.2.2 Spherically symmetric flow................................ 24 1.2.3 Plane potential flow...................................... 27 1.3 Axisymmetric stationary flows - nonrelativistic case........... 34 1.3.1 Basic equations........................................... 34 1.3.2 Mathematical interlude - covariant language............... 35 1.3.3 Structure of the two-dimensional flow..................... 37 1.3.4 Bondi-Hoyle accretion..................................... 45 1.3.5 Ejection from slowly rotating star........................ 49 1.4 Axisymmetric stationary accretion onto black hole.............. 57 1.4.1 Physical interlude - (3+1)-split in the Kerr metric....... 57 1.4.2 Basic equations........................................... 61 1.4.3 Exact solutions........................................... 65 1.4.4 Bondi-Hoyle accretion - relativistic limit................ 67 1.4.5 Accretion onto slowly rotating black hole................. 70 1.4.6 Accretion of a gas with small angular momentum onto nonrotating black hole......... 71 1.4.7 Thin transonic disk....................................... 77 1.5 Conclusion..................................................... 87 1 Chapter 2 Force-free limit - radio pulsar magnetosphere........................ 89 2.1 Astrophysical introduction..................................... 89 2.2 Main physical processes........................................ 92 2.2.1 Vacuum approximation...................................... 92 2.2.2 Particle creation in a strong magnetic field.............. 96 2.2.3 Structure of the magnetosphere............................ 99 2.3 Generation of secondary plasma.................................104 2.3.1 'Internal gap'............................................104 2.3.2 Neutron star surface......................................109 2.3.3 Propagation of gamma-quanta in superstrong magnetic field......................110 2.3.4 Effects of the general relativity.........................111 2.3.5 Particle generation in the magnetosphere................. 113 2.3.6 'Hollow cone' model...................................... 114 2.3.7 Particle generation - 'external gap'..................... 119 2.4 Pulsar equation............................................... 119 2.4.1 Force-free approximation. Magnetization parameter........ 119 2.4.2 Electromagnetic field. Integrals of motion............... 121 2.4.3 Grad-Shafranov equation.................................. 124 2.4.4 Mathematical interlude - quasi stationary approach....... 127 2.5 Energy loss of radio pulsars.................................. 130 2.5.1 Current loss mechanism................................... 130 2.5.2 Braking of inclined and orthogonal rotator............... 133 2.6 Structure of the magnetosphere................................ 141 2.6.1 Exact solutions.......................................... 141 2.6.2 Structure of the magnetosphere with longitudinal currents 158 2.6.3 Models of th
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 12,63 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Books From California, Simi Valley, CA, U.S.A.
hardcover. Condizione: Good. Ex- library book with stamps/ stickers. Codice articolo mon0003288774
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A didactic approach to understanding accretion flows, winds and jets of Astrophysical Compact ObjectsAnalytical treatment of the hydrodynamic and magnetohydrodynamic problem reveals physical concepts and provides better understanding of numerical . Codice articolo 5043341
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy extraction from a rotating black hole immersed in an external magnetic field. Finally, on the basis of the full MHD version of the Grad-Shafranov equation the author discusses the problems of jet collimation and particle acceleration in Active Galactic Nuclei, radio pulsars, and Young Stellar Objects. The comparison of the analytical results with numerical simulations demonstrates their good agreement. Assuming that the reader is familiar with the basic physical and mathematical concepts of General Relativity, the author uses the 3+1 split approach which allows the formulation of all results in terms of physically clear language of three dimensional vectors. The book contains detailed derivations of equations, numerous exercises, and an extensive bibliography. It therefore serves as both an introductory text for graduate students and a valuable reference work for researchers in the field. 448 pp. Englisch. Codice articolo 9783642012891
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy extraction from a rotating black hole immersed in an external magnetic field. Finally, on the basis of the full MHD version of the Grad-Shafranov equation the author discusses the problems of jet collimation and particle acceleration in Active Galactic Nuclei, radio pulsars, and Young Stellar Objects. The comparison of the analytical results with numerical simulations demonstrates their good agreement. Assuming that the reader is familiar with the basic physical and mathematical concepts of General Relativity, the author uses the 3+1 split approach which allows the formulation of all results in terms of physically clear language of three dimensional vectors. The book contains detailed derivations of equations, numerous exercises, and an extensive bibliography. It therefore serves as both an introductory text for graduate students and a valuable reference work for researchers in the field. Codice articolo 9783642012891
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy extraction from a rotating black hole immersed in an external magnetic field. Finally, on the basis of the full MHD version of the Grad-Shafranov equation the author discusses the problems of jet collimation and particle acceleration in Active Galactic Nuclei, radio pulsars, and Young Stellar Objects. The comparison of the analytical results with numerical simulations demonstrates their good agreement. Assuming that the reader is familiar with the basic physical and mathematical concepts of General Relativity, the author uses the 3+1 split approach which allows the formulation of all results in terms of physically clear language of three dimensional vectors. The book contains detailed derivations of equations, numerous exercises, and an extensive bibliography. It therefore serves as both an introductory text for graduate students and a valuable reference work for researchers in the field.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 448 pp. Englisch. Codice articolo 9783642012891
Quantità: 2 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783642012891
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642012891_new
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 448. Codice articolo 261372508
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 425 pages. 9.25x6.00x1.25 inches. In Stock. Codice articolo x-3642012892
Quantità: 2 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020213862
Quantità: Più di 20 disponibili