Articoli correlati a Multi-Objective Machine Learning: 16

Multi-Objective Machine Learning: 16 ISBN 13: 9783642067969

Multi-Objective Machine Learning: 16 - Brossura

 
9783642067969: Multi-Objective Machine Learning: 16

Sinossi

Recently, increasing interest has been shown in applying the concept of Pareto-optimality to machine learning, particularly inspired by the successful developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal models for constructing ensembles models and, and to achieve a desired trade-off between accuracy and interpretability of neural networks or fuzzy systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

Multi-Objective Clustering, Feature Extraction and Feature Selection.- Feature Selection Using Rough Sets.- Multi-Objective Clustering and Cluster Validation.- Feature Selection for Ensembles Using the Multi-Objective Optimization Approach.- Feature Extraction Using Multi-Objective Genetic Programming.- Multi-Objective Learning for Accuracy Improvement.- Regression Error Characteristic Optimisation of Non-Linear Models.- Regularization for Parameter Identification Using Multi-Objective Optimization.- Multi-Objective Algorithms for Neural Networks Learning.- Generating Support Vector Machines Using Multi-Objective Optimization and Goal Programming.- Multi-Objective Optimization of Support Vector Machines.- Multi-Objective Evolutionary Algorithm for Radial Basis Function Neural Network Design.- Minimizing Structural Risk on Decision Tree Classification.- Multi-objective Learning Classifier Systems.- Multi-Objective Learning for Interpretability Improvement.- Simultaneous Generation of Accurate and Interpretable Neural Network Classifiers.- GA-Based Pareto Optimization for Rule Extraction from Neural Networks.- Agent Based Multi-Objective Approach to Generating Interpretable Fuzzy Systems.- Multi-objective Evolutionary Algorithm for Temporal Linguistic Rule Extraction.- Multiple Objective Learning for Constructing Interpretable Takagi-Sugeno Fuzzy Model.- Multi-Objective Ensemble Generation.- Pareto-Optimal Approaches to Neuro-Ensemble Learning.- Trade-Off Between Diversity and Accuracy in Ensemble Generation.- Cooperative Coevolution of Neural Networks and Ensembles of Neural Networks.- Multi-Objective Structure Selection for RBF Networks and Its Application to Nonlinear System Identification.- Fuzzy Ensemble Design through Multi-Objective Fuzzy Rule Selection.- Applications of Multi-Objective Machine Learning.- Multi-Objective Optimisation for Receiver Operating Characteristic Analysis.- Multi-Objective Design of Neuro-Fuzzy Controllers for Robot Behavior Coordination.- Fuzzy Tuning for the Docking Maneuver Controller of an Automated Guided Vehicle.- A Multi-Objective Genetic Algorithm for Learning Linguistic Persistent Queries in Text Retrieval Environments.- Multi-Objective Neural Network Optimization for Visual Object Detection.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 2,25 per la spedizione in U.S.A.

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783540306764: Multi-objective Machine Learning: 16

Edizione in evidenza

ISBN 10:  3540306765 ISBN 13:  9783540306764
Casa editrice: Springer Nature, 2006
Rilegato

Risultati della ricerca per Multi-Objective Machine Learning: 16

Foto dell'editore

Editore: Springer, 2010
ISBN 10: 3642067964 ISBN 13: 9783642067969
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020215847

Contatta il venditore

Compra nuovo

EUR 202,73
Convertire valuta
Spese di spedizione: EUR 3,40
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yacchu, Jin (EDT)
Editore: Springer, 2010
ISBN 10: 3642067964 ISBN 13: 9783642067969
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 11876561-n

Contatta il venditore

Compra nuovo

EUR 203,89
Convertire valuta
Spese di spedizione: EUR 2,25
In U.S.A.
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Foto dell'editore

Yaochu Jin
ISBN 10: 3642067964 ISBN 13: 9783642067969
Nuovo Paperback Prima edizione

Da: Grand Eagle Retail, Mason, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Recently, increasing interest has been shown in applying the concept of Pareto-optimality to machine learning, particularly inspired by the successful developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal models for constructing ensembles models and, and to achieve a desired trade-off between accuracy and interpretability of neural networks or fuzzy systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783642067969

Contatta il venditore

Compra nuovo

EUR 206,20
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jin, Yaochu
ISBN 10: 3642067964 ISBN 13: 9783642067969
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Selected collection of recent research on multi-objective approach to machine learningRecent developments in evolutionary multi-objective optimizationApplies the concept of Pareto-optimality to machine learning Recently. Codice articolo 5045885

Contatta il venditore

Compra nuovo

EUR 180,07
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2010
ISBN 10: 3642067964 ISBN 13: 9783642067969
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783642067969_new

Contatta il venditore

Compra nuovo

EUR 217,25
Convertire valuta
Spese di spedizione: EUR 13,72
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yaochu Jin
ISBN 10: 3642067964 ISBN 13: 9783642067969
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Recently, increasing interest has been shown in applying the concept of Pareto-optimality to machine learning, particularly inspired by the successful developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal models for constructing ensembles models and, and to achieve a desired trade-off between accuracy and interpretability of neural networks or fuzzy systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems. 676 pp. Englisch. Codice articolo 9783642067969

Contatta il venditore

Compra nuovo

EUR 213,99
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yacchu, Jin (EDT)
Editore: Springer, 2010
ISBN 10: 3642067964 ISBN 13: 9783642067969
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 11876561

Contatta il venditore

Compra usato

EUR 239,97
Convertire valuta
Spese di spedizione: EUR 2,25
In U.S.A.
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Foto dell'editore

Unbekannt
ISBN 10: 3642067964 ISBN 13: 9783642067969
Antico o usato Brossura

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Codice articolo 9902626/2

Contatta il venditore

Compra usato

EUR 147,33
Convertire valuta
Spese di spedizione: EUR 105,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yaochu Jin
ISBN 10: 3642067964 ISBN 13: 9783642067969
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Recently, increasing interest has been shown in applying the concept of Pareto-optimality to machine learning, particularly inspired by the successful developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal models for constructing ensembles models and, and to achieve a desired trade-off between accuracy and interpretability of neural networks or fuzzy systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 676 pp. Englisch. Codice articolo 9783642067969

Contatta il venditore

Compra nuovo

EUR 213,99
Convertire valuta
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yaochu Jin
ISBN 10: 3642067964 ISBN 13: 9783642067969
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Recently, increasing interest has been shown in applying the concept of Pareto-optimality to machine learning, particularly inspired by the successful developments in evolutionary multi-objective optimization. It has been shown that the multi-objective approach to machine learning is particularly successful to improve the performance of the traditional single objective machine learning methods, to generate highly diverse multiple Pareto-optimal models for constructing ensembles models and, and to achieve a desired trade-off between accuracy and interpretability of neural networks or fuzzy systems. This monograph presents a selected collection of research work on multi-objective approach to machine learning, including multi-objective feature selection, multi-objective model selection in training multi-layer perceptrons, radial-basis-function networks, support vector machines, decision trees, and intelligent systems. Codice articolo 9783642067969

Contatta il venditore

Compra nuovo

EUR 213,99
Convertire valuta
Spese di spedizione: EUR 65,04
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 5 copie di questo libro

Vedi tutti i risultati per questo libro