Convex Analysis and Minimization Algorithms I: Fundamentals: 305 - Brossura

Hiriart-Urruty, Jean-Baptiste; Lemarechal, Claude

 
9783642081613: Convex Analysis and Minimization Algorithms I: Fundamentals: 305

Sinossi

In the second printing of these two volumes 305 and 306 the authors have made various local improvements and corrections, and updated the bibliography. The index has been considerably augmented and refined.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Recensione

From the reviews: "... The book is very well written, nicely illustrated, and clearly understandable even for senior undergraduate students of mathematics... Throughout the book, the authors carefully follow the recommendation by A. Einstein: 'Everything should be made as simple as possible, but not simpler.'"

Contenuti

Table of Contents Part I.- I. Convex Functions of One Real Variable.- II. Introduction to Optimization Algorithms.- III. Convex Sets.- IV. Convex Functions of Several Variables.- V. Sublinearity and Support Functions.- VI. Subdifferentials of Finite Convex Functions.- VII. Constrained Convex Minimization Problems: Minimality Conditions, Elements of Duality Theory.- VIII. Descent Theory for Convex Minimization: The Case of Complete Information.- Appendix: Notations.- 1 Some Facts About Optimization.- 2 The Set of Extended Real Numbers.- 3 Linear and Bilinear Algebra.- 4 Differentiation in a Euclidean Space.- 5 Set-Valued Analysis.- 6 A Bird’s Eye View of Measure Theory and Integration.- Bibliographical Comments.- References.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9783540568506: Convex Analysis and Minimization Algorithms: Fundamentals: 305

Edizione in evidenza

ISBN 10:  3540568506 ISBN 13:  9783540568506
Casa editrice: Springer Nature, 1993
Rilegato