At the end of 1960s and the beginning of 1970s, when the Russian version of this book was written, the 'general theory of random processes' did not operate widely with such notions as semimartingale, stochastic integral with respect to semimartingale, the ItO formula for semimartingales, etc. At that time in stochastic calculus (theory of martingales), the main object was the square integrable martingale. In a short time, this theory was applied to such areas as nonlinear filtering, optimal stochastic control, statistics for diffusion type processes. In the first edition of these volumes, the stochastic calculus, based on square integrable martingale theory, was presented in detail with the proof of the Doob-Meyer decomposition for submartingales and the description of a structure for stochastic integrals. In the first volume ('General Theory') these results were used for a presentation of further important facts such as the Girsanov theorem and its generalizations, theorems on the innovation pro cesses, structure of the densities (Radon-Nikodym derivatives) for absolutely continuous measures being distributions of diffusion and Itô-type processes, and existence theorems for weak and strong solutions of stochastic differential equations. All the results and facts mentioned above have played a key role in the derivation of 'general equations' for nonlinear filtering, prediction, and smoothing of random processes.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
The subject of these two volumes is non-linear filtering (prediction and smoothing) theory and its application to the problem of optimal estimation, control with incomplete data, information theory, and sequential testing of hypothesis. The required mathematical background is presented in the first volume: the theory of martingales, stochastic differential equations, the absolute continuity of probability measures for diffusion and Ito processes, elements of stochastic calculus for counting processes. The book is not only addressed to mathematicians but should also serve the interests of other scientists who apply probabilistic and statistical methods in their work. The theory of martingales presented in the book has an independent interest in connection with problems from financial mathematics.
In the second edition, the authors have made numerous corrections, updating every chapter, adding two new subsections devoted to the Kalman filter under wrong initial conditions, as well asa new chapter devoted to asymptotically optimal filtering under diffusion approximation. Moreover, in each chapter a comment is added about the progress of recent years.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,21 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In the second edition, two new subsections devoted to the Kalman filter under wrong initial conditions, and a new chapter on asymptotically optimal filtering under diffusion approximation have been addedIn each chapter a comment is added about the progr. Codice articolo 5047407
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -At the end of 1960s and the beginning of 1970s, when the Russian version of this book was written, the 'general theory of random processes' did not operate widely with such notions as semimartingale, stochastic integral with respect to semimartingale, the ItO formula for semimartingales, etc. At that time in stochastic calculus (theory of martingales), the main object was the square integrable martingale. In a short time, this theory was applied to such areas as nonlinear filtering, optimal stochastic control, statistics for diffusion type processes. In the first edition of these volumes, the stochastic calculus, based on square integrable martingale theory, was presented in detail with the proof of the Doob-Meyer decomposition for submartingales and the description of a structure for stochastic integrals. In the first volume ('General Theory') these results were used for a presentation of further important facts such as the Girsanov theorem and its generalizations, theorems on the innovation pro cesses, structure of the densities (Radon-Nikodym derivatives) for absolutely continuous measures being distributions of diffusion and Itô-type processes, and existence theorems for weak and strong solutions of stochastic differential equations. All the results and facts mentioned above have played a key role in the derivation of 'general equations' for nonlinear filtering, prediction, and smoothing of random processes. 448 pp. Englisch. Codice articolo 9783642083662
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642083662_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - At the end of 1960s and the beginning of 1970s, when the Russian version of this book was written, the 'general theory of random processes' did not operate widely with such notions as semimartingale, stochastic integral with respect to semimartingale, the ItO formula for semimartingales, etc. At that time in stochastic calculus (theory of martingales), the main object was the square integrable martingale. In a short time, this theory was applied to such areas as nonlinear filtering, optimal stochastic control, statistics for diffusion type processes. In the first edition of these volumes, the stochastic calculus, based on square integrable martingale theory, was presented in detail with the proof of the Doob-Meyer decomposition for submartingales and the description of a structure for stochastic integrals. In the first volume ('General Theory') these results were used for a presentation of further important facts such as the Girsanov theorem and its generalizations, theorems on the innovation pro cesses, structure of the densities (Radon-Nikodym derivatives) for absolutely continuous measures being distributions of diffusion and Itô-type processes, and existence theorems for weak and strong solutions of stochastic differential equations. All the results and facts mentioned above have played a key role in the derivation of 'general equations' for nonlinear filtering, prediction, and smoothing of random processes. Codice articolo 9783642083662
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -At the end of 1960s and the beginning of 1970s, when the Russian version of this book was written, the 'general theory of random processes' did not operate widely with such notions as semimartingale, stochastic integral with respect to semimartingale, the ItO formula for semimartingales, etc. At that time in stochastic calculus (theory of martingales), the main object was the square integrable martingale. In a short time, this theory was applied to such areas as nonlinear filtering, optimal stochastic control, statistics for diffusion type processes. In the first edition of these volumes, the stochastic calculus, based on square integrable martingale theory, was presented in detail with the proof of the Doob-Meyer decomposition for submartingales and the description of a structure for stochastic integrals. In the first volume ('General Theory') these results were used for a presentation of further important facts such as the Girsanov theorem and its generalizations, theorems on the innovation pro cesses, structure of the densities (Radon-Nikodym derivatives) for absolutely continuous measures being distributions of diffusion and Itô-type processes, and existence theorems for weak and strong solutions of stochastic differential equations. All the results and facts mentioned above have played a key role in the derivation of 'general equations' for nonlinear filtering, prediction, and smoothing of random processes.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 448 pp. Englisch. Codice articolo 9783642083662
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 444 2nd Edition. Codice articolo 262447012
Quantità: 4 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020217021
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 444 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 5433723
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 444. Codice articolo 182447022
Quantità: 4 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA79036420836686
Quantità: 1 disponibili