The human brain possesses the remarkable capability of understanding, - terpreting, and producing human language, thereby relying mostly on the left hemisphere. The ability to acquire language is innate as can be seen from d- orders such as speci?c language impairment (SLI), which manifests itself in a missing sense for grammaticality. Language exhibits strong compositionality and structure. Hence biological neural networks are naturally connected to processing and generation of high-level symbolic structures. Unlike their biological counterparts, arti?cial neural networks and logic do not form such a close liason. Symbolic inference mechanisms and statistical machine learning constitute two major and very di?erent paradigms in ar- ?cial intelligence which both have their strengths and weaknesses: Statistical methods o?er ?exible and highly e?ective tools which are ideally suited for possibly corrupted or noisy data, high uncertainty and missing information as occur in everyday life such as sensor streams in robotics, measurements in medicine such as EEG and EKG, ?nancial and market indices, etc. The m- els, however, are often reduced to black box mechanisms which complicate the integration of prior high level knowledge or human inspection, and they lack theabilitytocopewitharichstructureofobjects,classes,andrelations. S- bolic mechanisms, on the other hand, are perfectly applicative for intuitive human-machine interaction, the integration of complex prior knowledge, and well founded recursive inference. Their capability of dealing with uncertainty andnoiseandtheire?ciencywhenaddressingcorruptedlargescalereal-world data sets, however, is limited. Thus, the inherent strengths and weaknesses of these two methods ideally complement each other.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
The human brain possesses the remarkable capability of understanding, interpreting, and producing language, structures, and logic. Unlike their biological counterparts, artificial neural networks do not form such a close liason with symbolic reasoning: logic-based inference mechanisms and statistical machine learning constitute two major and very different paradigms in artificial intelligence with complementary strengths and weaknesses. Modern application scenarios in robotics, bioinformatics, language processing, etc., however require both the efficiency and noise-tolerance of statistical models and the generalization ability and high-level modelling of structural inference meachanisms. A variety of approaches has therefore been proposed for combining the two paradigms.
This carefully edited volume contains state-of-the-art contributions in neural-symbolic integration, covering `loose' coupling by means of structure kernels or recursive models as well as `strong' coupling of logic and neural networks. It brings together a representative selection of results presented by some of the top researchers in the field, covering theoretical foundations, algorithmic design, and state-of-the-art applications in robotics and bioinformatics.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,83 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents recent developments in neural-symbolic integrationWhen it comes to robotics and bioinformatics, the Holy Grail everyone is seeking is how to dovetail logic-based inference and statistical machine learning. This volume offers some poss. Codice articolo 5048337
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -When it comes to robotics and bioinformatics, the Holy Grail everyone is seeking is how to dovetail logic-based inference and statistical machine learning. This volume offers some possible solutions to this eternal problem. Edited with flair and sensitivity by Hammer and Hitzler, the book contains state-of-the-art contributions in neural-symbolic integration, covering `loose' coupling by means of structure kernels or recursive models as well as `strong' coupling of logic and neural networks. 336 pp. Englisch. Codice articolo 9783642093227
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The human brain possesses the remarkable capability of understanding, - terpreting, and producing human language, thereby relying mostly on the left hemisphere. The ability to acquire language is innate as can be seen from d- orders such as speci c language impairment (SLI), which manifests itself in a missing sense for grammaticality. Language exhibits strong compositionality and structure. Hence biological neural networks are naturally connected to processing and generation of high-level symbolic structures. Unlike their biological counterparts, arti cial neural networks and logic do not form such a close liason. Symbolic inference mechanisms and statistical machine learning constitute two major and very di erent paradigms in ar- cial intelligence which both have their strengths and weaknesses: Statistical methods o er exible and highly e ective tools which are ideally suited for possibly corrupted or noisy data, high uncertainty and missing information as occur in everyday life such as sensor streams in robotics, measurements in medicine such as EEG and EKG, nancial and market indices, etc. The m- els, however, are often reduced to black box mechanisms which complicate the integration of prior high level knowledge or human inspection, and they lack theabilitytocopewitharichstructureofobjects,classes,andrelations. S- bolic mechanisms, on the other hand, are perfectly applicative for intuitive human-machine interaction, the integration of complex prior knowledge, and well founded recursive inference. Their capability of dealing with uncertainty andnoiseandtheire ciencywhenaddressingcorruptedlargescalereal-world data sets, however, is limited. Thus, the inherent strengths and weaknesses of these two methods ideally complement each other. Codice articolo 9783642093227
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The human brain possesses the remarkable capability of understanding, - terpreting, and producing human language, thereby relying mostly on the left hemisphere. The ability to acquire language is innate as can be seen from d- orders such as speci c language impairment (SLI), which manifests itself in a missing sense for grammaticality. Language exhibits strong compositionality and structure. Hence biological neural networks are naturally connected to processing and generation of high-level symbolic structures. Unlike their biological counterparts, arti cial neural networks and logic do not form such a close liason. Symbolic inference mechanisms and statistical machine learning constitute two major and very di erent paradigms in ar- cial intelligence which both have their strengths and weaknesses: Statistical methods o er exible and highly e ective tools which are ideally suited for possibly corrupted or noisy data, high uncertainty and missing information as occur in everyday life such as sensor streams in robotics, measurements in medicine such as EEG and EKG, nancial and market indices, etc. The m- els, however, are often reduced to black box mechanisms which complicate the integration of prior high level knowledge or human inspection, and they lack theabilitytocopewitharichstructureofobjects,classes,andrelations. S- bolic mechanisms, on the other hand, are perfectly applicative for intuitive human-machine interaction, the integration of complex prior knowledge, and well founded recursive inference. Their capability of dealing with uncertainty andnoiseandtheire ciencywhenaddressingcorruptedlargescalereal-world data sets, however, is limited. Thus, the inherent strengths and weaknesses of these two methods ideally complement each other.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 336 pp. Englisch. Codice articolo 9783642093227
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783642093227
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642093227_new
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020217729
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 336. Codice articolo 263077649
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 332 pages. 9.25x6.10x0.76 inches. In Stock. Codice articolo x-3642093221
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 336 81 Illus. Codice articolo 5851598
Quantità: 4 disponibili