Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0; F ,t? 0, P) - t t note a standard Brownian motion with B = 0, (F ,t? 0) being its natural ?ltra- 0 t t tion. Let E := exp B? ,t? 0 denote the exponential martingale associated t t 2 to (B ,t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t) :=E (K?E ) (0.1) K t and + C (t) :=E (E?K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 ? 2 ? N (x) := e dy. (0.3) 2? ?? The celebrated Black-Scholes formula gives an explicit expression of? (t) and K C (t) in terms ofN : K ? ? log(K) t log(K) t ? (t)= KN ? + ?N ? ? (0.4) K t 2 t 2 and ? ?
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
The Black-Scholes formula plays a central role in Mathematical Finance; it gives the right price at which buyer and seller can agree with, in the geometric Brownian framework, when strike K and maturity T are given. This yields an explicit well-known formula, obtained by Black and Scholes in 1973.
The present volume gives another representation of this formula in terms of Brownian last passages times, which, to our knowledge, has never been made in this sense.
The volume is devoted to various extensions and discussions of features and quantities stemming from the last passages times representation in the Brownian case such as: past-future martingales, last passage times up to a finite horizon, pseudo-inverses of processes... They are developed in eight chapters, with complements, appendices and exercises.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,05 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. To the best of our knowledge this book discusses in a unique way last passage timesDiscovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0 F ,t? 0, P) - t . Codice articolo 5049227
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t 0; F ,t 0, P) - t t note a standard Brownian motion with B = 0, (F ,t 0) being its natural ltra- 0 t t tion. Let E := exp B ,t 0 denote the exponential martingale associated t t 2 to (B ,t 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K 0: + (t) :=E (K E ) (0.1) K t and + C (t) :=E (E K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 2 N (x) := e dy. (0.3) 2 The celebrated Black-Scholes formula gives an explicit expression of (t) and K C (t) in terms ofN : K log(K) t log(K) t (t)= KN + N (0.4) K t 2 t 2 and 292 pp. Englisch. Codice articolo 9783642103940
Quantità: 2 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783642103940
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642103940_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t 0; F ,t 0, P) - t t note a standard Brownian motion with B = 0, (F ,t 0) being its natural ltra- 0 t t tion. Let E := exp B ,t 0 denote the exponential martingale associated t t 2 to (B ,t 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K 0: + (t) :=E (K E ) (0.1) K t and + C (t) :=E (E K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 2 N (x) := e dy. (0.3) 2 The celebrated Black-Scholes formula gives an explicit expression of (t) and K C (t) in terms ofN : K log(K) t log(K) t (t)= KN + N (0.4) K t 2 t 2 and. Codice articolo 9783642103940
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t 0; F ,t 0, P) - t t note a standard Brownian motion with B = 0, (F ,t 0) being its natural ltra- 0 t t tion. Let E := exp B ,t 0 denote the exponential martingale associated t t 2 to (B ,t 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K 0: + (t) :=E (K E ) (0.1) K t and + C (t) :=E (E K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 2 N (x) := e dy. (0.3) 2 The celebrated Black-Scholes formula gives an explicit expression of (t) and K C (t) in terms ofN : K log(K) t log(K) t (t)= KN + N (0.4) K t 2 t 2 and Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 292 pp. Englisch. Codice articolo 9783642103940
Quantità: 2 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. 2010. Paperback. . . . . . Codice articolo V9783642103940
Quantità: 15 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 7862522-n
Quantità: Più di 20 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783642103940
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 7862522-n
Quantità: Più di 20 disponibili