Articoli correlati a Algorithmic Learning Theory: 21st International Conference,...

Algorithmic Learning Theory: 21st International Conference, Alt 2010, Canberra, Australia, October 6-8, 2010. Proceedings: 6331 - Brossura

 
9783642161070: Algorithmic Learning Theory: 21st International Conference, Alt 2010, Canberra, Australia, October 6-8, 2010. Proceedings: 6331

Sinossi

This volume contains the papers presented at the 21st International Conf- ence on Algorithmic Learning Theory (ALT 2010), which was held in Canberra, Australia, October 6–8, 2010. The conference was co-located with the 13th - ternational Conference on Discovery Science (DS 2010) and with the Machine Learning Summer School, which was held just before ALT 2010. The tech- cal program of ALT 2010, contained 26 papers selected from 44 submissions and ?ve invited talks. The invited talks were presented in joint sessions of both conferences. ALT 2010 was dedicated to the theoretical foundations of machine learning and took place on the campus of the Australian National University, Canberra, Australia. ALT provides a forum for high-quality talks with a strong theore- cal background and scienti?c interchange in areas such as inductive inference, universal prediction, teaching models, grammatical inference, formal languages, inductive logic programming, query learning, complexity of learning, on-line learning and relative loss bounds, semi-supervised and unsupervised learning, clustering,activelearning,statisticallearning,supportvectormachines,Vapnik- Chervonenkisdimension,probablyapproximatelycorrectlearning,Bayesianand causal networks, boosting and bagging, information-based methods, minimum descriptionlength,Kolmogorovcomplexity,kernels,graphlearning,decisiontree methods, Markov decision processes, reinforcement learning, and real-world - plications of algorithmic learning theory. DS 2010 was the 13th International Conference on Discovery Science and focused on the development and analysis of methods for intelligent data an- ysis, knowledge discovery and machine learning, as well as their application to scienti?c knowledge discovery. As is the tradition, it wasco-located and held in parallel with Algorithmic Learning Theory.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

Editors’ Introduction.- Editors’ Introduction.- Invited Papers.- Towards General Algorithms for Grammatical Inference.- The Blessing and the Curse of the Multiplicative Updates.- Discovery of Abstract Concepts by a Robot.- Contrast Pattern Mining and Its Application for Building Robust Classifiers.- Optimal Online Prediction in Adversarial Environments.- Regular Contributions.- An Algorithm for Iterative Selection of Blocks of Features.- Bayesian Active Learning Using Arbitrary Binary Valued Queries.- Approximation Stability and Boosting.- A Spectral Approach for Probabilistic Grammatical Inference on Trees.- PageRank Optimization in Polynomial Time by Stochastic Shortest Path Reformulation.- Inferring Social Networks from Outbreaks.- Distribution-Dependent PAC-Bayes Priors.- PAC Learnability of a Concept Class under Non-atomic Measures: A Problem by Vidyasagar.- A PAC-Bayes Bound for Tailored Density Estimation.- Compressed Learning with Regular Concept.- A Lower Bound for Learning Distributions Generated by Probabilistic Automata.- Lower Bounds on Learning Random Structures with Statistical Queries.- Recursive Teaching Dimension, Learning Complexity, and Maximum Classes.- Toward a Classification of Finite Partial-Monitoring Games.- Switching Investments.- Prediction with Expert Advice under Discounted Loss.- A Regularization Approach to Metrical Task Systems.- Solutions to Open Questions for Non-U-Shaped Learning with Memory Limitations.- Learning without Coding.- Learning Figures with the Hausdorff Metric by Fractals.- Inductive Inference of Languages from Samplings.- Optimality Issues of Universal Greedy Agents with Static Priors.- Consistency of Feature Markov Processes.- Algorithms for Adversarial Bandit Problems with Multiple Plays.- Online Multiple Kernel Learning: Algorithms and Mistake Bounds.- An Identity for Kernel Ridge Regression.

Product Description

Hard to Find book

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: ottimo
Zustand: Sehr gut | Seiten: 419...
Visualizza questo articolo

GRATIS per la spedizione da Germania a Italia

Destinazione, tempi e costi

EUR 17,13 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783642161094: Algorithmic Learning Theory: 21st International Conference, ALT 2010, Canberra, Australia, October 6-8, 2010. Proceedings

Edizione in evidenza

ISBN 10:  364216109X ISBN 13:  9783642161094
Brossura

Risultati della ricerca per Algorithmic Learning Theory: 21st International Conference,...

Foto dell'editore

Unbekannt
Editore: Springer-Verlag GmbH, 2010
ISBN 10: 3642161073 ISBN 13: 9783642161070
Antico o usato Brossura

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Sehr gut. Zustand: Sehr gut | Seiten: 419 | Sprache: Englisch | Produktart: Bücher. Codice articolo 9254923/12

Contatta il venditore

Compra usato

EUR 59,82
Convertire valuta
Spese di spedizione: GRATIS
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Hutter, Marcus (EDT); Stephan, Frank (EDT); Vovk, Vladimir (EDT); Zeugmann, Thomas (EDT)
Editore: Springer, 2010
ISBN 10: 3642161073 ISBN 13: 9783642161070
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 11625565-n

Contatta il venditore

Compra nuovo

EUR 54,15
Convertire valuta
Spese di spedizione: EUR 17,13
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Hutter, Marcus|Stephan, Frank|Vovk, Vladimir|Zeugmann, Thomas
ISBN 10: 3642161073 ISBN 13: 9783642161070
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 5051040

Contatta il venditore

Compra nuovo

EUR 64,08
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Hutter, Marcus (EDT); Stephan, Frank (EDT); Vovk, Vladimir (EDT); Zeugmann, Thomas (EDT)
Editore: Springer, 2010
ISBN 10: 3642161073 ISBN 13: 9783642161070
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 11625565

Contatta il venditore

Compra usato

EUR 61,59
Convertire valuta
Spese di spedizione: EUR 17,13
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Hutter, Marcus (Editor)
ISBN 10: 3642161073 ISBN 13: 9783642161070
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 434 pages. 9.20x6.10x1.00 inches. In Stock. Codice articolo x-3642161073

Contatta il venditore

Compra nuovo

EUR 80,70
Convertire valuta
Spese di spedizione: EUR 11,58
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Marcus Hutter
ISBN 10: 3642161073 ISBN 13: 9783642161070
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware - This volume contains the papers presented at the 21st International Conf- ence on Algorithmic Learning Theory (ALT 2010), which was held in Canberra, Australia, October 6-8, 2010. The conference was co-located with the 13th - ternational Conference on Discovery Science (DS 2010) and with the Machine Learning Summer School, which was held just before ALT 2010. The tech- cal program of ALT 2010, contained 26 papers selected from 44 submissions and ve invited talks. The invited talks were presented in joint sessions of both conferences. ALT 2010 was dedicated to the theoretical foundations of machine learning and took place on the campus of the Australian National University, Canberra, Australia. ALT provides a forum for high-quality talks with a strong theore- cal background and scienti c interchange in areas such as inductive inference, universal prediction, teaching models, grammatical inference, formal languages, inductive logic programming, query learning, complexity of learning, on-line learning and relative loss bounds, semi-supervised and unsupervised learning, clustering,activelearning,statisticallearning,supportvectormachines,Vapnik- Chervonenkisdimension,probablyapproximatelycorrectlearning,Bayesianand causal networks, boosting and bagging, information-based methods, minimum descriptionlength,Kolmogorovcomplexity,kernels,graphlearning,decis iontree methods, Markov decision processes, reinforcement learning, and real-world - plications of algorithmic learning theory. DS 2010 was the 13th International Conference on Discovery Science and focused on the development and analysis of methods for intelligent data an- ysis, knowledge discovery and machine learning, as well as their application to scienti c knowledge discovery. As is the tradition, it wasco-located and held in parallel with Algorithmic Learning Theory. Codice articolo 9783642161070

Contatta il venditore

Compra nuovo

EUR 78,58
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2010
ISBN 10: 3642161073 ISBN 13: 9783642161070
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020219738

Contatta il venditore

Compra nuovo

EUR 52,97
Convertire valuta
Spese di spedizione: EUR 64,28
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Marcus Hutter
ISBN 10: 3642161073 ISBN 13: 9783642161070
Nuovo Paperback

Da: Grand Eagle Retail, Mason, OH, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. This volume contains the papers presented at the 21st International Conf- ence on Algorithmic Learning Theory (ALT 2010), which was held in Canberra, Australia, October 68, 2010. The conference was co-located with the 13th - ternational Conference on Discovery Science (DS 2010) and with the Machine Learning Summer School, which was held just before ALT 2010. The tech- cal program of ALT 2010, contained 26 papers selected from 44 submissions and ?ve invited talks. The invited talks were presented in joint sessions of both conferences. ALT 2010 was dedicated to the theoretical foundations of machine learning and took place on the campus of the Australian National University, Canberra, Australia. ALT provides a forum for high-quality talks with a strong theore- cal background and scienti?c interchange in areas such as inductive inference, universal prediction, teaching models, grammatical inference, formal languages, inductive logic programming, query learning, complexity of learning, on-line learning and relative loss bounds, semi-supervised and unsupervised learning, clustering,activelearning,statisticallearning,supportvectormachines,Vapnik- Chervonenkisdimension,probablyapproximatelycorrectlearning,Bayesianand causal networks, boosting and bagging, information-based methods, minimum descriptionlength,Kolmogorovcomplexity,kernels,graphlearning,deci siontree methods, Markov decision processes, reinforcement learning, and real-world - plications of algorithmic learning theory. DS 2010 was the 13th International Conference on Discovery Science and focused on the development and analysis of methods for intelligent data an- ysis, knowledge discovery and machine learning, as well as their application to scienti?c knowledge discovery. As is the tradition, it wasco-located and held in parallel with Algorithmic Learning Theory. Constitutes the refereed proceedings of the 21th International Conference on Algorithmic Learning Theory, ALT 2010, that was held in Canberra, Australia. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783642161070

Contatta il venditore

Compra nuovo

EUR 65,07
Convertire valuta
Spese di spedizione: EUR 64,28
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello