The purpose of these lecture notes is to provide an introduction to the theory of complex Monge–Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary).
These operators are of central use in several fundamental problems of complex differential geometry (Kähler–Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford–Taylor), Monge–Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi–Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli–Kohn–Nirenberg–Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong–Sturm and Berndtsson).
Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
The purpose of these lecture notes is to provide an introduction to the theory of complex Monge Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary).
These operators are of central use in several fundamental problems of complex differential geometry (Kähler Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford Taylor), Monge Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli Kohn Nirenberg Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong Sturm and Berndtsson).
Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,42 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The first self contained presentation of Krylov s stochastic analysis for the complex Monge-Ampere equation A comprehensive presentation of Yau s proof of the Calabi conjecture A great part of the material (both classical results and more r. Codice articolo 5053292
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The purpose of these lecture notes is to provide an introduction to the theory of complex Monge-Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary).These operators are of central use in several fundamental problems of complex differential geometry (Kähler-Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford-Taylor), Monge-Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi-Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli-Kohn-Nirenberg-Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong-Sturm and Berndtsson).Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis. 320 pp. Englisch. Codice articolo 9783642236686
Quantità: 2 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9783642236686
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The purpose of these lecture notes is to provide an introduction to the theory of complex Monge-Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary).These operators are of central use in several fundamental problems of complex differential geometry (Kähler-Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford-Taylor), Monge-Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi-Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli-Kohn-Nirenberg-Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong-Sturm and Berndtsson).Each chapter can be read independently and is based on a series of lectures by R. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis. Codice articolo 9783642236686
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -The purpose of these lecture notes is to provide an introduction to the theory of complex Monge¿Ampère operators (definition, regularity issues, geometric properties of solutions, approximation) on compact Kähler manifolds (with or without boundary).These operators are of central use in several fundamental problems of complex differential geometry (Kähler¿Einstein equation, uniqueness of constant scalar curvature metrics), complex analysis and dynamics. The topics covered include, the Dirichlet problem (after Bedford¿Taylor), Monge¿Ampère foliations and laminated currents, polynomial hulls and Perron envelopes with no analytic structure, a self-contained presentation of Krylov regularity results, a modernized proof of the Calabi¿Yau theorem (after Yau and Kolodziej), an introduction to infinite dimensional riemannian geometry, geometric structures on spaces of Kähler metrics (after Mabuchi, Semmes and Donaldson), generalizations of the regularity theory of Caffarelli¿Kohn¿Nirenberg¿Spruck (after Guan, Chen and Blocki) and Bergman approximation of geodesics (after Phong¿Sturm and Berndtsson).Each chapter can be read independently and is based on a series of lectures byR. Berman, Z. Blocki, S. Boucksom, F. Delarue, R. Dujardin, B. Kolev and A. Zeriahi, delivered to non-experts. The book is thus addressed to any mathematician with some interest in one of the following fields, complex differential geometry, complex analysis, complex dynamics, fully non-linear PDE's and stochastic analysis.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 320 pp. Englisch. Codice articolo 9783642236686
Quantità: 2 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Complex Monge-Amp�re Equations and Geodesics in the Space of K�hler Metrics 1. Book. Codice articolo BBS-9783642236686
Quantità: 5 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 12937619-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642236686_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 12937619-n
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9783642236686
Quantità: 10 disponibili