In many practical situations, we are interested in statistics characterizing a population of objects: e.g. in the mean height of people from a certain area.
Most algorithms for estimating such statistics assume that the sample values are exact. In practice, sample values come from measurements, and measurements are never absolutely accurate. Sometimes, we know the exact probability distribution of the measurement inaccuracy, but often, we only know the upper bound on this inaccuracy. In this case, we have interval uncertainty: e.g. if the measured value is 1.0, and inaccuracy is bounded by 0.1, then the actual (unknown) value of the quantity can be anywhere between 1.0 - 0.1 = 0.9 and 1.0 + 0.1 = 1.1. In other cases, the values are expert estimates, and we only have fuzzy information about the estimation inaccuracy.
This book shows how to compute statistics under such interval and fuzzy uncertainty. The resulting methods are applied to computer science (optimal scheduling of different processors), to information technology (maintaining privacy), to computer engineering (design of computer chips), and to data processing in geosciences, radar imaging, and structural mechanics.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From the reviews:
“This book is a research exposition by Kreinovich and coworkers. ... The main goal is to present algorithms for computation of statistical characteristics (like variance) but under interval and fuzzy uncertainty of the available data. In this book, fuzzy uncertainty is reduced to interval uncertainty by alpha-cutwise consideration of (convex) fuzzy uncertainty. ... For increase of readability, mathematical proofs are presented always at the end of the chapters.” (Wolfgang Näther, Zentralblatt MATH, Vol. 1238, 2012)Part I Computing Statistics under Interval and Fuzzy Uncertainty: Formulation of the Problem and an Overview of General Techniques Which Can Be Used for Solving this Problem.- Part II Algorithms for Computing Statistics Under Interval and Fuzzy Uncertainty.- Part III Towards Computing Statistics under Interval and Fuzzy Uncertainty: Gauging the Quality of the Input Data.- Part IV Applications.- Part V Beyond Interval and Fuzzy Uncertainty.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 45,00 per la spedizione da Germania a U.S.A.
Destinazione, tempi e costiEUR 3,55 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar3113020221725
Quantità: Più di 20 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut - Neubindung, Buchschnitt leicht verkürzt, Buchrücken leicht angestoßen, Ausgabe 2012 | Seiten: 432 | Sprache: Englisch | Produktart: Bücher. Codice articolo 11201812/12
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Recent advances in Computing Statistics under Interval and Fuzzy Uncertainty Presents various Applications to Computer Science and Engineering In many practical situations, we are interested in statistics characterizing a population of . Codice articolo 5053725
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642249044_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Neuware - In many practical situations, we are interested in statistics characterizing a population of objects: e.g. in the mean height of people from a certain area. Most algorithms for estimating such statistics assume that the sample values are exact. In practice, sample values come from measurements, and measurements are never absolutely accurate. Sometimes, we know the exact probability distribution of the measurement inaccuracy, but often, we only know the upper bound on this inaccuracy. In this case, we have interval uncertainty: e.g. if the measured value is 1.0, and inaccuracy is bounded by 0.1, then the actual (unknown) value of the quantity can be anywhere between 1.0 - 0.1 = 0.9 and 1.0 + 0.1 = 1.1. In other cases, the values are expert estimates, and we only have fuzzy information about the estimation inaccuracy. This book shows how to compute statistics under such interval and fuzzy uncertainty. The resulting methods are applied to computer science (optimal scheduling of different processors), to information technology (maintaining privacy), to computer engineering (design of computer chips), and to data processing in geosciences, radar imaging, and structural mechanics. Codice articolo 9783642249044
Quantità: 2 disponibili