This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student’s distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student’s t-marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student’s t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar’s theorem are explained.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Prof. Grigelionis is a senior research fellow at the Institute of Mathematics and Informatics of Vilnius University, member of the Lithuanian Academy of Sciences and the International Statistical Institute. He has done extensive research in stochastic analysis and its applications. These include the semimartingale characterisation of stochastic processes with conditionally independent increments and solutions of stochastic Ito's equations, stochastic nonlinear filtering equations, optimal stopping of stochastic processes - joint research with A. Shiryaev - criteria of weak convergence of stochastic processes - joint research with R. Mikulevicius - etc. His current research topics are the properties of mixed Gaussian distributions and related stochastic processes.
This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student s distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student s t-marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student s t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar s theorem are explained.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,20 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Codice articolo 5056483
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student's distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student's t -marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student's t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar's theorem are explained. 112 pp. Englisch. Codice articolo 9783642311451
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 18483462-n
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student's distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student's t -marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student's t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar's theorem are explained. Codice articolo 9783642311451
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783642311451_new
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -This brief monograph is an in-depth study of the infinite divisibility and self-decomposability properties of central and noncentral Student¿s distributions, represented as variance and mean-variance mixtures of multivariate Gaussian distributions with the reciprocal gamma mixing distribution. These results allow us to define and analyse Student-Lévy processes as Thorin subordinated Gaussian Lévy processes. A broad class of one-dimensional, strictly stationary diffusions with the Student¿s t-marginal distribution are defined as the unique weak solution for the stochastic differential equation. Using the independently scattered random measures generated by the bi-variate centred Student-Lévy process, and stochastic integration theory, a univariate, strictly stationary process with the centred Student¿s t- marginals and the arbitrary correlation structure are defined. As a promising direction for future work in constructing and analysing new multivariate Student-Lévy type processes, the notion of Lévy copulas and the related analogue of Sklar¿s theorem are explained.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 112 pp. Englisch. Codice articolo 9783642311451
Quantità: 2 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783642311451
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 18483462-n
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 2013 edition. 110 pages. 9.25x6.25x0.25 inches. In Stock. Codice articolo x-3642311458
Quantità: 2 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9783642311451
Quantità: 10 disponibili